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Abstract

The problem of controlling the behavior of a spacecraft in an optimal manner is one that has been

studied since the beginning of the space era in the late 1950s. Recently, the complexity of such

optimization problems has been increased by the introduction of spacecraft that are comparatively

small in size and capable of being reconfigured, either in between missions or on-orbit. While such

spacecraft have the potential to greatly expand the variety of missions that can be undertaken,

they also increase the basic number of design variables that must be optimized. This dissertation

presents a novel approach for the design of spacecraft control systems that optimizes both controller

gain parameters and physical attributes of the spacecraft in parallel. The central design tool for

this new strategy is a genetic algorithm, which applies concepts from evolutionary biology to search

a complex design space in an efficient manner. Results are presented for spacecraft of various

sizes, and the genetic algorithm design results are compared to a number of more traditional design

approaches.

In the first part of this dissertation the genetic algorithm is applied to the problem of tuning

the gain parameters of a nonlinear control law. This controller is used within a small spacecraft

performing an attitude tracking maneuver, and must compensate for multiple environmental dis-

turbance moments and the imposition of actuator saturation limits. While the control law under

study has proven stability properties, no work has yet been done on optimizing the gain parame-

ters for a specific application. The combined complexity of the controller itself and the spacecraft

system make gain tuning via traditional approaches very difficult, and as such a genetic algorithm

is utilized. The genetic algorithm can search a broad swath of the overall design space, and does

so more efficiently than a human engineer applying their intuition in an “informed” trial-and-error

approach to the same problem.
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With the basic efficacy of the genetic algorithm established, in the next phase of the dissertation

a novel controller optimization approach known as location-scheduled control is introduced. Under

location-scheduled control, the use of the genetic algorithm is extended to not only optimize the

gain parameters of a given control law but also the physical location of the control actuators within

the spacecraft. This dual optimization of both controller gain parameters and physical properties of

the spacecraft yields a catalog of design solutions that can be called upon from mission to mission,

which significantly reduces the time required for control system design. The ability to easily relocate

the hardware components of a spacecraft control system is enabled by a class of spacecraft known

as CubeSats, which will be described in detail.

In the final portion of this dissertation the location-scheduled control methodology is applied

to a real-word testbed system and hardware results are compared to those obtained via simulation.

This system makes use of a unique property of superconducting physics known as flux-pinned

interfaces that allows CubeSat-scale test articles to be easily reconfigured. The location-scheduled

control approach is used to simultaneously determine the optimal configuration of the reconfigurable

spacecraft system and the appropriate gains for a single-axis reorientation maneuver. It is shown

through hardware testing that the genetic algorithm once again yields a combination of system

configuration and controller gain values that outperforms those found by a control systems engineer.
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Nomenclature

β = Weight factor used in fitness function
Ce = Control effort expended (Nms)
f = Fitness score for a given design solution
J = Spacecraft inertia tensor (kg m2)
k = Scalar proportional gain for the controller of Chapter 4
kP = PID proportional gain
kI = PID integral gain
kD = PID derivative gain
K = 3× 3 proportional gain matrix for the controller of Chapter 3
L = 3× 3 derivative gain matrix for the controller of Chapter 3
λ̂ = Principal axis of initial rotational error
Mad = 3× 1 aerodynamic drag torque acting on the spacecraft (Nm)
Mg = 3× 1 gravity gradient torque acting on the spacecraft (Nm)
Mut = Mutation probability in genetic algorithm
Num = Number of generations over which genetic algorithm is executed
Pop = Genetic algorithm design population size
P = 3× 3 derivative gain matrix for the controller of Chapter 4
Q = 3× 3 error in spacecraft attitude
R = 3× 3 rotation matrix describing spacecraft attitude
Rd = 3× 3 desired spacecraft rotation matrix
Ts = Settling time of spacecraft (s)
σ̄ = Modified Rodrigues parameter representation of spacecraft rotational error
τ = 3× 1 commanded control torque (Nm)
τus = 3× 1 unsaturated control torque generated by the controller of Chapter 4 (Nm)
τmax = 3× 1 maximum control torque that can be supplied by the system actuators (Nm)
τf = Friction torque acting on spacecraft testbed (Nm)
θ = Angular position of spacecraft testbed (rad)
θd = Desired angular position of spacecraft testbed (rad)
θf = Final angular position of spacecraft testbed (rad)
Ω0 = Spacecraft orbital rate (rad/s)
ω = Spacecraft angular velocity (rad/s)
ω0 = Inital spacecraft angular velocity (rad/s)
ωd = Desired spacecraft angular velocity (rad/s)
ωe = Error in spacecraft angular velocity (rad/s)
Xover = Crossover probability in the genetic algorithm
ζ = 3× 1 exponential mapping of the attitude error Q
ζref = 3× 1 reference error measure
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Chapter 1

Introduction

1.1 Motivation

This dissertation presents a novel approach to the design of the attitude determination and control

subsystem (ADCS) of small spacecraft. Over the past ten years the aerospace community has been

profoundly impacted by the introduction of inexepensive, commerically-available components that

are smaller and less power-hungry than their predecessors. This commerical-off-the-shelf (COTS)

hardware has resulted in smaller spacecraft which can be developed in a shorter period of time,

necessitating a new strategy for the development of each subsystem within the spacecraft. In this

research a new design approach will be introduced which considers multiple facets of the spacecraft

ADCS design problem in parallel. This strategy has the potential to greatly reduce the amount of

time required to design a spacecraft ADCS, and complements the rapidly emerging field of small,

inexpensive spacecraft.

One exciting consequence of the evolution of very small spacecraft is new possibilities for systems

that can be easily reconfigured, either on the ground in between missions or in real time on-

orbit. One approach to reconfiguration enabled by recent technology advances is to place multiple

microprocessors throughout the spacecraft volume, creating discrete modules with a certain measure

of intelligence. A spacecraft designer can then interchange these modules from mission to mission,

or can introduce additional actuation systems that allow the modules to reconfigure while in space

depending on the needs of the mission. Spacecraft reconfiguration drastically increases the number of

design options available to an engineer, which in turn increases the complexity of the overall design

1
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problem. Furthermore, reconfigurable spacecraft may be applied to a wide range of tasks, from

robotic assembly to sparse aperture arrays, placing higher performance demands on the ADCS. This

dissertation develops a new design strategy that optimizes both controller gains and the physical

location of the control elements within a reconfigurable spacecraft, a methodology which can be

applied to a wide range of spacecraft and missions.

1.2 Approach

While the overall design strategy is widely applicable, this dissertation is concerned with the design

and optimization of spacecraft operating in low Earth orbit (LEO). This is due in part to the wide

range of missions that LEO spacecraft can carry out, and also because new, highly reconfigurable

“CubeSats” have been used for LEO missions in the past. For such missions, an engineer may

with equal likelyhood be asked to design a control system for a high-precision imaging payload or

for a spacecraft which points a biological system to the sun. Both of these applications require

active attitude control, and stand to benefit from the application of the location-scheduled control

approach introduced in this dissertation. From a practical standpoint, it is generally cheaper and

quicker to build spacecraft operating in LEO, and launch access to low earth orbits comes much

more regularly than launches to Geostationary orbit or interplanetary trajectories.

The design strategy introduced in this dissertation is developed through three distinct applica-

tion examples. The first example serves as a foundation for the main contribution of the dissertation,

in that it is only considers optimization of controller gain parameters for a spacecraft operating in

LEO. Once the baseline gain tuning problem has been solved, the design tool is extended to prob-

lems in which both the control parameters and physical characteristics of the system are optimized

in parallel. This dual optimization is undertaken for a small spacecraft operating in LEO and then

is applied to a real-world hardware testbed for reconfigurable spacecraft. While many examples

exist for gain tuning in LEO, no work has yet been done on coupling gain tuning with physical

parameter optimization, and this serves as the cornerstone for the research presented herein.

The basic problem of optimizing control law parameters for a spacecraft system has been widely

studied (see, for example, the review provided in [2]). If the system to be controlled is linear or can

be linearized about an operating point, then it is possible to apply classical root locus techniques

2
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for pole placement [1] or more advanced linear optimal control techniques [30]. If the system

is nonlinear, however, the techniques to tune controller performance become more complicated.

Previously-demonstrated approaches include application of physics-based control strategies to a

simplified version of the system [31] or nonlinear programming techniques [6], [8]. In contrast, this

research proposes a new methodology for optimizing control system parameters using a genetic

algorithm (GA). As will be detailed in the next chapter, implementation of a GA has advantages

over these other strategies in that no reduction or simplification of the underlying equations of

motion is required, a large swath of the design space can be rapidly searched, and the algorithm

is less likely to settle on local optima [10, 18]. Moreover, the GA can be readily extended to the

dual optimization problem of locating ADCS components and tuning gain parameters, which is the

central focus of this research. The previously-published methods described above bring great value

to gain parameter optimization, but are less applicable to the broader design approach presented

in this work.

1.3 The Small Spacecraft Movement

A central motivating factor behind the design concept that is at the heart of this dissertation is the

advent of small, inexpensive, and largely modular spacecraft. Of particular interest are spacecraft

known as CubeSats or nanosatellites. Widespread development of nanosatellites first began with the

creation of the CubeSat standard by Stanford University and California Polytechnic State Univer-

sity, San Luis Obispo, in 1999 [21]. This standard, coupled with the Cal Poly-built Poly Picosatellite

Orbital Deployer (P-POD–seen in Figure 1.1), enabled a wide range of universities, researchers, and

government organizations from around the world to start developing low-cost spacecraft. To date,

nanosatellite missions have ranged from simple image-capture operations while in LEO to testing

of complex thruster systems and implementation of astrobiology experiments. The number and

complexity of nanosatellites in orbit has steadily increased, however very few of these spacecraft

have attempted anything more than the simplest of science missions.

The standard nomenclature employed by the nanosatellite community is to refer to spacecraft

sizing in terms of the number of 10 cm cubes of which the spacecraft is comprised. For example,

a nanosatellite which measures 10 cm x 10 cm x 10 cm would be referred to as 1U, a nanosatellite
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Figure 1.1 – The Poly Picosatellite Orbital Deployer (P-POD) shown holding a spacecraft mass model.

which measures 10 cm x 10 cm x 20 cm would be 2U, and so on. The Mission Design Division

at NASA Ames Research Center has successfully launched four different 3U nanosatellite science

missions, including the GeneSat-1 spacecraft, seen in Figure 1.2. This spacecraft was passively

stabilized (as opposed to actively controlled) because the science payload did not levy stringent

pointing requirements on the mission design.

Figure 1.2 – The GeneSat-1 spacecraft, a 3U nanosatellite developed by NASA Ames Research Center.

With recent advances in miniaturization of ADCS sensors and actuators, it is now possible to

control CubeSat-class spacecraft to a relatively high level of accuracy. In order to leverage these

technology advances, NASA Ames is currently developing the first-ever 6U nanosatellite. Such a

spacecraft could house both a full ADCS for active control and a wide range of science payloads,

which would greatly broaden the range of missions that can be undertaken by nanosatellites. The

6U form factor will be considered as an application example in Chapter 4 of this dissertation. An

early concept for a 6U nanosatellite is presented in Figure 1.3.
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Figure 1.3 – The 6U MIST spacecraft, an actively controlled mission concept.

1.4 The Location-Scheduled Control Approach

While the location-scheduled control methodology will be developed in greater detail later in this

dissertation, it is worthwhile to provide a preliminary overview here. The overall goal is to optimize

both the gain parameters of the control law being used as well as certain physical properties of

the spacecraft system in parallel. This concept is enabled in part by the CubeSat standard itself,

whereby entire spacecraft are defined in discrete units of volume. If one can leverage this inherent

discretization to consider the ADCS as a stand-alone module, then it may be possible to relocate

this module within the overall spacecraft volume.

Take as an example the 6U spacecraft seen in Figure 1.4. If one assumes that the ADCS

occupies 1U of volume and that the rest of the spacecraft bus operations are contained in another

1U of volume, then there is 4U of volume that can be allocated for the science payload. Depending

on the requirements of this payload, it is likely that there is a specific location within the spacecraft

where the ADCS could be placed to help optimize the performance of that payload. Under location-

scheduled control both the physical location of the ADCS and the gain parameters of the controller

being used within the ADCS are tuned in parallel to generate the best-possible overall design for the

mission at hand. A genetic algorithm (GA) is used to faciliate this optimization process. The GA

is an apt tool because the combined design space of controller gain values and candidate spacecraft

layouts can become quite large, and it will be shown that the GA is capable of searching this design

space in an efficient manner.

The location-scheduled control concept is intended not only for specific spacecraft but also for

entire ranges of missions. If a spacecraft developer wanted to reuse the same suite of ADCS sensors

and actuators across multiple missions, then the same 1U module could be tested in multiple
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Figure 1.4 – Two conceptual 6U spacecraft layouts, demonstrating how CubeSat modularity enables
hardware reconfiguration.

spacecraft layouts a priori. Optimizing ADCS location and controller gain values for a specific

maneuver across multiple spacecraft layouts gives rise to a location-based schedule of gains. This

gain schedule can be called upon from mission to mission in order to speed up the ADCS design

process, which will in turn greatly reduce the development life cycle for a given mission.

1.5 Spacecraft Dynamics and Control

The fundamental spacecraft building block that is considered in this work is the attitude deter-

mination and control subsystem. As its name implies, the ADCS is responsible for determining

the orientation (the attitude) of the spacecraft with respect to a given reference frame and then

imparting control torques upon the spacecraft to change that attitude as desired. Prior to devel-

oping control laws to affect changes in the spacecraft attitude, it is necessary to understand the

dynamic equations which govern the spacecraft motion. The same basic set of equations describing

the rotational motion of a spacecraft (or some other rigid body) will be used throughout this work,

and it is worthwhile to first consider a very general case in which one wishes to control the motion

of a spacecraft orbiting the Earth. In order to do so, it is necessary to first define the set of reference

frames that will be used to describe the motion of the spacecraft. Throughout this development

it is assumed that the spacecraft in question is orbiting the Earth in a circular, equatorial orbit,

which simplifies the motion of these reference frames somewhat.
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1.5.1 Relevant Reference Frames

For a body in LEO, one should first define an inertial reference frame with respect to which equations

of motion can be defined. The inertial reference frame N used in this research has its orgin at the

center of mass of the Earth, with the n̂2 unit vector normal to the orbit plane, the n̂1 unit vector

pointing towards vernal equinox, and the n̂3 unit vector completing the right-handed system (as

depicted in Figure 1.5). It is important to note that this reference frame is not inertial when

considering the motion of the Earth about the Sun, however for spacecraft operating in LEO it

is a generally accepted practice to make the simplifying assumption that this is in fact an inertial

frame [44]. Later work in this dissertation considers the operation of a spacecraft testbed on the

surface of the Earth, and for that research this same inertial frame is perfectly acceptable for defining

equations of motion.

A typical LEO spacecraft control problem arises from wanting a payload or instrument on a

spacecraft to point towards the surface of the Earth. This can be accomplished by requiring a

certain body-fixed axis to be in alignment with the nadir vector, which is a vector pointing towards

the center of mass of the Earth. To accomplish this control task, it can be convenient to define

an intermediate reference frame whose origin is located at the center of mass of the spacecraft and

which orbits the Earth at a constant rate. This orbit frame, often called the Local Vertical Local

Horizontal (LVLH) frame, is defined such that the l̂2 unit vector is normal to the orbit plane, the

l̂1 vector points in the spacecraft velocity direction, and the l̂3 vector points towards zenith. The

LVLH frame rotates about the inertial frame at a rate equal to the spacecraft orbital rate Ω0, which

is a function of the orbit altitude [45].

The final reference frame required for a spacecraft control problem is a body-fixed reference

frame B. Regardless of the specific application, in this research the origin of the B frame is located

at the geometric center of the spacecraft. For applications in orbit, the axes of the B frame are

defined such that the body frame and the LVLH frame are aligned when the rotation matrix (to

be defined shortly) from the B frame to the LVLH frame equals identity. For applications on the

surface of the Earth, the axes of the B frame will be defined in a manner appropriate to the specific

hardware under study. A visualization of the N = {n̂1, n̂2, n̂3} and LVLH = {l̂1, l̂2, l̂3} frames is

given in Figure 1.5, while a depiction of the spacecraft B frame (with axes b1, b2, and b3) for the
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first application example is given in Figure 1.6.

Figure 1.5 – Inertial and LVLH reference
frames with the sense of the orbital angular
velocity Ω0 also shown

Figure 1.6 – Artists rendition of the
Hawai’iSat spacecraft and the body-fixed
reference frame B

1.5.2 Spacecraft Attitude Dynamics Model

This dissertation is only concerned with the rotational motion of a spacecraft. While many LEO

spacecraft are equipped with sensors and actuators to enable translational motion in orbit, there are

a host of applications for which rotational motion control only is adequate. This motion is governed

by Euler’s equation [13], which considers the rate of change of the spacecraft angular momentum as

a function of control and disturbance moments acting on the spacecraft. As outlined in [45], typical

sources of disturbance moments in LEO include aerodynamic drag, gravity gradient effects, solar

pressure drag, and residual magnetism. In this research only the disturbance moments contributed

by aerodynamic drag and the gravity gradient of the spacecraft will be considered. For typical LEO

missions the moment contributed by aerodynamic drag is the largest disturbance by at least an

order of magnitude [45], so it is a reasonable simplification to only consider these two disturbance

sources. In this general case, the equations of motion for the rotation of the spacecraft are derived

from Euler’s equation [13] as

Jω̇ + ω × Jω = τ +Mad +Mg (1.1)
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where J is the inertia tensor for the spacecraft in kgm2, ω is the angular velocity (in rad/s) of the

spacecraft defined in the B frame, τ is the control torque, Mad is the aerodynamic drag disturbance,

and Mg is the gravity gradient disturbance, all given in Nm. Note that both disturbance sources

are dependent upon the orientation of the spacecraft with respect to LVLH reference frame [45],

such that

Mad = 0.5ρCdAV
2(v̂ × S̄cp) (1.2)

Mg = 3Ω0(−BRL l̂3 ×−JBRL l̂3) (1.3)

Where in (1.2) ρ is the atmospheric density at the orbit altitude in kg/m2, Cd is the drag

coefficient of the spacecraft, A is the spacecraft area normal to the velocity direction in m2, and V

is the linear speed of the spacecraft (in m/s). The unit vector v̂ points in the velocity direction,

while S̄cp is the vector from the center of mass to the center of pressure of the spacecraft (defined

in the B frame). The rotation matrix BRL in (1.3) defines the rotation from the LVLH frame to

the B frame, and the unit vector −l̂3 is used because we require the nadir vector direction to define

the gravity gradient moment.

Numerous methods exist for defining the attitude of the spacecraft body frame with respect to

a given reference frame [13]. When considering two coordinate frames defined in R3, a straight-

forward approach is to make use of a rotation matrix, denoted R. Rotation matrices are members

of the special orthogonal group SO(3), defined as [5]

SO(3) = {R ∈ R3x3 : RTR = I = RRT ,det(R) = 1}

One drawback to using rotation matrices is that they require nine pieces of information to be

carried throughout any calculations (the entries of the 3× 3 matrix), and as such many aerospace

applications make use of certain reduced-parameter or minimal representations of attitude [46].

Examples of reduced parameter representations are Euler angles, Modified Rodrigues Parameters,

or quaternions, which require three, three, and four pieces of information, respectively [40]. However,

as outlined in [32], the major drawback of using any minimal representation such as Euler angles
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or quaternions is that they necessitate a local analysis of the system, since they cannot represent

the attitude globally. Euler angles suffer from kinematic singularities which arise from certain

trigonometric functions going to zero, and both quaternions and MRPs are subject to a phenomenon

known as “unwinding” [32]. The effects of unwinding on total control effort required over a maneuver

are detailed in [35], which compares a continuous attitude tracking control law based on quaternions

that exhibits unwinding with the stabilizing attitude tracking control scheme that will be discussed

in Chapter 3. This comparison shows that the control law that exhibits unwinding requires much

more control effort compared to the stabilizing control law, where control effort is defined as a time

integral of the Euclidean norm of the control torque over the maneuver duration.

The physical state space of rigid body attitude motion is technically defined as SO(3)× R3, or

the union of the space of rigid body rotations and translational motion in three dimensions [5]. As

described in [35] and elsewhere, the state space SO(3) × R3 can be parameterized as R6, and in

this version of the state space there exists certain points that are very close to the desired physical

state but which result in the feedback control system accelerating away from the equilibrium point,

as opposed to converging towards it. The system will ultimately coverge towards the desired state,

however this unwinding phenomenon will result in an unecessary loss of control effort. To avoid

this problem, this research will largely use rotation matrices as the primary representation of the

attitude of a spacecraft. The evolution of a given rotation matrix R in time is governed by the

equation

Ṙ = Rω× (1.4)

where ω× is the skew-symmetric operator that carries a 3× 1 vector into a 3× 3 matrix [5] as

ω× =


0 −ω3 ω2

ω3 0 −ω1

−ω2 ω1 0


Equations (1.1) and (1.4) fully describe the rotational motion of a spacecraft in LEO. We further

parameterize this motion by introducing expressions for the error in attitude and angular velocity,

denoted Q and ωe respectively
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Q = RT
dR (1.5)

ωe = ω −QTωd (1.6)

where Rd and ωd are the desired spacecraft attitude and angular velocity, both of which are defined

with respect to the inertial frame N. The rotational motion of the spacecraft (Equations (1.1) and

(1.4)), parameterized by the rotational and angular velocity error (Equations (1.5) and (1.6)), serve

as the foundation for the control problems considered in subsequent chapters.

1.5.3 Spacecraft Control Strategies

A very wide range of literature exists regarding the control of spacecraft in low Earth orbit and

beyond. The purpose of this dissertation is not to synthesize new control algorithms for certain

LEO applications, but rather to introduce a new design strategy which can be readily adapted

to a wide array of existing controllers. Three different rotational maneuvers are studied in the

applications included in this work, and three different control algorithms are used to perform these

maneuvers. Even with such a diversity of approaches this still represents a small cross-section of

the tasks spacecraft might peform, and the purpose of this section is to provide a brief overview of

the range of rotational problems encountered on-orbit.

After a spacecraft has been delivered into orbit it separates from the launch vehicle and must be

stabilized with respect to the LVLH frame. This stabilization maneuver is referred to as “detumble”,

and the control objective is to drive the spacecraft from an arbitrary attitude and high angular

velocity to a known attitude and little or no angular velocity. This can be accomplished through

various means, but a common approach in LEO spacecraft is to use magnetic control actuators and

the so-called B-dot control law [43]. It is not necessary to use magnetic actuators, but as the name

implies a magnetic sensor is required to sense the rate of change of the Earth’s magnetic field (the

“B-dot”). The detumble operation can also be a helpful control mode when an anomaly occurs and

the spacecraft must be placed in a “safe” operating mode where it will await further commands

from the ground station.

Once the spacecraft has been stablized with respect to the LVLH frame a number of different
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operating modes can be undertaken. A spacecraft may wish to keep its attitude fixed with respect

to some point in the inertial frame (such as the sun or a collection of stars), and this type of

motion would require small but continuous changes to the spacecraft attitude as the LVLH frame

moves about the N frame. In order to calibrate sensors and other instruments included in the

spacecraft payload it is sometimes necessary to reorient the spacecraft and the bring it back to

rest, often referred to as a rest-to-rest reorientation. One challenge associated with this type of

maneuver is that it requires the spacecraft to eliminate all of the angular velocity that it has built

up during the reorientation, which can often lead to a certain amount of overshoot. Finally, a

more complex collection of maneuvers are those which require either a constant or a time-varying

spacecraft angular velocity. Such rotations are often required of Earth-observing spacecraft, which

may either seek to continuously point a sensor towards the Earth or point and stare at a single

location while the spacecraft passes over it.

Many factors contribute to what type of controller is appropriate for a specific maneuver, such

as whether a large-angle rotation must be undertaken or whether there are known nonlinearities,

including time delays or actuator saturation bounds. Three different cases are presented in this re-

search: a constant angular velocity tracking maneuver which uses a nonlinear controller, a detumble

maneuver which uses a different type of saturation-restricted nonlinear controller, and a rest-to-rest

reorientation that makes use of a classical Proportional-Integral-Derivative (PID) controller.

1.6 Sensitivity Issues

Ultimately, no real-world system will behave in a truly optimal manner. Inaccuracies in the space-

craft model, uncertainty in the performance of sensors and actuators, and our limited ability to

accurately model the LEO environment will all yield behavior that is sub-optimal in some way. The

performance of any controller will be altered by changes in system properties, and it is important

to understand how these changes affect the design strategy proposed in this work. In each of the

following application examples a number of sensitivity studies will be undertaken, in which certain

parameters are intentionally varied to understand the impact of these differences. A key strength of

the genetic algorithm approach to control system design is that the algorithm can rapidly search a

wide portion of the underlying design space, and multiple searches can be performed easily. Thus,
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even if it is impossible to predict the exact manner in which a model may differ from reality, it is

relatively simple and quick for an engineer to test multiple sets of parameters to understand how

they may impact optimality. The ability to design and test controller solutions rapidly is critical in

the world of spacecraft development, and a genetic algorithm is ideal for these rapid simulations.
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Chapter 2

Genetic Algorithms for Control

System Design

2.1 Gain Tuning Approaches

A central concern in any control system design problem is determining what gain values should be

used for the specific controller being implemented. The broad field of gain tuning has been widely

researched, often with the goal of finding the “optimal” combination of gains for the problem under

study. How one defines optimal gains is of course dependent on what the controls engineer is

seeking to optimize. For simple linear systems, it is possible to apply root locus techniques to place

the poles of the system such that time response characteristics (percent overshoot, settling time)

are optimized [1]. These strategies are extended in the linear optimal control approach, whereby

the gain values are optimized by minimizing a cost functional. This cost functional is typically

a weighted combination of system time response and system energy consumption [22], which is

another way one might define “optimal”. Linear optimal control has been shown to be an effective

method for spacecraft controller optimization [30], but it requires linearizing the system equations

about an operating point.

Unfortunately, many spacecraft control problems are not linear. Spacecraft operating in LEO

must often perform large-angle rotational maneuvers, eliminating the ability to linearize the equa-

tions of motion. Additionally, many control actuators used within spacecraft have limits on the

amount of torque they can apply, creating saturation bounds on the applied control signal. A num-
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ber of strategies have been developed for nonlinear gain tuning problems, including application of

physics-based control strategies to a simplified version of the system [31] or nonlinear programming

techniques [6], [8]. All of these strategies are more complex than their linear counterparts, and often

still require that some simplifying assumptions be made.

Since there exist both linear and nonlinear spacecraft control applications, it would be very

beneficial to develop a single framework for controller optimization which can be applied to any

such problem. In this research three different approaches to gain tuning will be studied, all of which

are appropriate for either linear or nonlinear controllers. The first method relies upon a human

control systems engineer applying their intuition to the problem under study. In this approach,

the human engineer undertakes an “informed” trial-and-error search strategy, testing a variety of

gain combinations based upon the observed system response. One advantage to this method is

that it can be applied to any type of controller being used with any type of physical system, and

it leverages the intuition of the engineer in optimizing the gain terms. An obvious disadvantage is

that it is somewhat slow, in that one engineer can only test one solution at a time.

One possible way to automate the human trial-and-error approach would be to write computer

code which tests every possible solution for a particular control problem automatically. In this

method the controls engineer would first determine what the ideal system response is and then

write computer code to test all of the possible gain combinations automatically. Such an exhaustive

search technique is advantageous in that it ensures that the truly optimal combination of gains is

found for the controller being used because all gain combinations are tested. However, depending

on the complexity of the problem under study it might be infeasible to actually test every possible

solution in a reasonable amount of time. A number of different controller design problems are

presented in this dissertation, and for some of them it would simply be impossible to actually test

all possible gain combinations to find the globally optimal solution.

The last gain tuning method presented in this work makes use of a genetic algorithm. As will

be embelished upon in later sections of this chapter a genetic algorithm is a tool for multi-objective

design optimization. Genetic algorithms make use of operators from evolutionary biology to search

a complex design space with the objective of finding an optimal solution. One advantage of the

genetic algorithm approach is that it randomly creates an initial population of designs and then

searches the design space using probablistic techniques. This helps the algorithm to avoid becoming
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stuck on local optima, although it does result in the occasional selection of poor-performing designs

within the popluation. As compared to the hand-tuning and exhaustive search approaches, genetic

algorithms tend to be able to test a broader cross-section of the design space in a shorter period of

time.

In subsequent chapters of this dissertation a comparison will be made between the aforemen-

tioned design methods using a variety of control algorithms. The comparison will be based upon

certain measures for optimality that are relevant to the spacecraft control problems being studied.

Each method has its own advantages, but it will be shown that generally the genetic algorithm

outperforms the other methods for both controller gain optimization and the broader problem of

location-scheduled control.

2.2 The Genetic Algorithm

2.2.1 Algorithm Overview

A genetic algorithm is a computer-based tool for optimization of complex design problems. Past

examples of problems studied using GAs within the aerospace community include launch vehicle

design [3], missle system development [27], and flexible structure design [24]. In addition to these

applications, genetic algorithms have also been used to tune the gain parameters of an LQR con-

troller for aircraft control [14], as well as those of a nonlinear PID controller used for a robotic

manipulator [25] and a neural network-based PID controller [23] for the same application. One

unique attribute of GAs as compared to other optimization approaches is that they are heuristic, in

that no mathematical proof exists demonstrating their ability to obtain an optimal solution for the

problem under study. While lacking a formal proof of optimality, past GA research demonstrates

that the algorithm will produce continuously improving design solutions from generation to gener-

ation as the population evolves. It will be shown in this dissertation that the algorithm is able to

find ideal controller solutions in a timely manner as compared to the other optimization approaches

considered.

As outlined in [18], GAs seek optimal solutions to multi-objective design optimization problems

by applying a variety of concepts from evolutionary biology. Ultimately, the search process amounts

to survival of the fittest, in which ill-performing design solutions are discarded and the desireable
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traits of well-performing designs become more likely to be selected for use. At the outset of the

algorithm an initial population of candidate design solutions is randomly selected from the overall

design space. The quality of each member of the population is evaluated with a user-defined fitness

function, which allows for each design to be sorted based on its relative fitness. The best-performing

solutions are selected to become “parents” for the next generation of design solutions, and the

“children” designs are created by applying genetic operators known as crossover and mutation to

these parents. The process of evaluating designs and then creating new children design solutions

is repeated either until a certain fitness function value has been reached or until a pre-determined

number of generations have been tested. Both the number of designs in the population and the

number of generations over which the algorithm is executed can be controlled by the user, and

multiple sets of these variables will be tested in this dissertation. A visualization of the overall flow

of information within a genetic algorithm is given in Figure 2.1.

Figure 2.1 – A visualization of the overall flow of a genetic algorithm.

2.2.2 The Chromosome Structure

A central component of any GA is the manner in which the members of the design population are

represented within the algorithm. Each design is encoded as a string of binary digits referred to

as genes, and each string of genes is called a chromosome. The number of binary digits and the

meaning of each one is specific to the design problem under consideration. Take as an example the

chromosome template used in the next chapter of this dissertation, in which the gain parameters

of a complex control law are optimized for use in a small spacecraft. For this problem a total of

36 bits were used, six each for each of the gain parameters to be optimized. As can be seen in

Figure 2.2, the first six genes define the value of the gain k1, the next six correspond to the gain

k2, and so on. In their raw form each member of the design population simply looks like a random

string of binary digits, but these strings are an easy format against which to apply the biological
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operators that drive design evolution. The structure of the chromosome and the number of genes

used to represent each design trait is entirely up to the user, and in this work three different gene

structures will be studied.

Figure 2.2 – A representative chromosome structure used for a controller gain optimization problem.

2.2.3 Evolving the Design Population

Once the fitness of each design has been evaluated using the fitness function (which will be described

in Section 2.3), the algorithm must sort through all of the designs in the population and determine

which ones are the most fit to become parents. Numerous methods have been studied for selection

of parent designs [10,11], such as roulette wheel selection, random number selection, or tournament

selection. In this research tournament selection is utilized, with the tournament size equal to

two. Under tournament selection, after the fitness score has been calculated for all designs in the

population these designs are selected at random to compete in a two-contestant tournament. Of the

two designs, the one with the higher fitness score is deemed the winner, and is selected to become

a parent for the next generation. Tournament selection is a quick and efficient strategy for parent

selection in terms of computer computation time [10], and it guarantees that the poorest-performing

solutions will not become parents for the next design generation. The process of parent selection

is repeated until there is a sufficent number of parent pairs to create a new generation of designs.

This number is also selectable by the user; one can choose to allow high-performing designs to be

copied unchanged into the next generation, or one can simply replace the entire design population

at each generation using children created from the best-performing designs. In this work, the entire

population is replaced at every generation in order to encourage broad search across the design

space.

After all of the parents have been selected for reproduction the actual process of creating children

designs can be initiated. The mechanism for variation within the children designs is the application

of two probabilistic operators, crossover and mutation. Crossover swaps sections of the parent
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chromosomes after they have been selected for reproduction, creating two children that will be a

new variation of the parents. In contrast, mutation flips the value of a specific bit in a given child

design. As seen in Figure 2.3 below, in the simplest case neither crossover nor mutation occurs (a),

and the two parent designs are mapped directly to become two children designs. When crossover

occurs (b) the parent designs are “cut” at a certain location and the bits from that location forward

are swapped in the children designs. Under mutation (c) a specific bit on a child design is switched

from a 1 to a 0 or vice versa, regardless of whether or not crossover has occured. The mutation

can happen to one, both, or neither design, and the location of the mutation is also randomized.

Crossover and mutation each occur with a user-controllable probability, which is what allows the

GA to search through a broad swath of the overall design space by being randomly pushed to test

different candidate solutions. A detailed study on the ideal combinations of crossover and mutation

is provided in [9], and a variety of probability combinations will be presented in subsequent chapters.

Figure 2.3 – Visualization of some possible ways that the crossover and mutation operators can be
implemented.

2.3 The Fitness Function

The primary driver for evolution of the design population within a GA is the fitness function. This

function is responsible for evaluating the relative quality of each member of the population, which
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influences which designs are selected for reproduction. The fitness function ultimately dictates which

designs are considered to be “optimal,” which greatly impacts the performance of the algorithm.

This function is defined by the user, and must reflect the attribute or attributes of the design

population which are to be optimized. As such, the design of the fitness function is a critical step

in the overall creation of the algorithm; a fitness function which does not represent the needs of the

designer will cause the GA to yield designs which are not optimal for the problem under study.

The focus of this dissertation is on optimizing controller gain parameters as well as spacecraft

configurations for a variety of applications. For such design problems, one can call upon the canoni-

cal performance attributes of control systems to create appropriate fitness functions. System settling

time, rise time, percent overshoot, and steady state error are classic metrics for control system tun-

ing [19], all of which may be appropriate for inclusion in a fitness function. If one wishes to include

multiple performance metrics in a fitness function, then it might be necessary to create a weighted

combination, such as that seen in Equation (2.1).

f = −(Ts + γOS) (2.1)

In Equation (2.1) Ts represents the settling time of the control maneuver in seconds and OS is

the percent overshoot. The weight factor γ has been included to allow the user to adjust the relative

contribution of each of these metrics in the fitness score. For example, if one was more concerned

with how much a design overshoots its design target, then increasing γ could drive the fitness

function to select designs which better satisfy this need. Note that in (2.1) the fitness values are

all calculated as being negative. This is equivalent to seeking the minimum possible combination

of settling time and percent overshoot, which is often a desireable outcome for control systems

designers. Maximizing a negative fitness score is similar in theory to minimizing a positive cost

functional, which is the approach typically taken in linear optimal control [22].

A number of different fitness function structures will be presented in subsequent chapters of

this work. The overall objective is to find the best-possible controller designs for different rota-

tional maneuvers, and depending on the problem under study one fitness function may prove more

advantageous than another. The aforementioned performance metrics are all concerned with the

time response of the system (e.g. settling time, rise time) but it is often also necessary to optimize
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the energy response of the system. There may be a finite amount of energy available to power the

actuators of a given system, or there might be a known actuator saturation limit that cannot be

exceeded. Minimizing both the energy response and the time response of the system is a classic

control systems problem, one that will be visited multiple times in subsequent chapters.

2.4 The Death Penalty

An additional mechanism for guiding the evolution of the GA design population is a “death penalty.”

As the name implies, a death penalty eliminates certain members of the design population from

possibly becoming parents for the next generation. This is accomplished by assigning an extremely

poor fitness score to any design which fails to satisfy a certain design criterion, which will in turn

cause it to not be selected when the algorithm goes through the tournament selection process. The

probabilistic nature of the crossover and mutation operations can sometimes cause the GA to create

designs which do not perform terribly well, and one advantage of a death penalty is that it can

weed out certain undesirable designs early in the natural selection process.

In this dissertation a death penalty will be combined with a fitness function to allow the end-user

to not only optimize a certain set of parameters within the fitness function, but to also eliminate

all designs which do not satisify a given performance metric. Two of the three applications in this

dissertation make use of a death penalty that operates on the maximum torque being generated by

the control actuators, while the third example utilizes a death penalty acting on settling time. The

actuators used within small spacecraft are only capable of providing a comparatively low amount

of total control torque, and a death penalty is used in the simulated system to ensure that this

maximum torque level is not exceeded. Similarly, the death penalty that acts on settling time

discards any designs that fail to satisfy a given settling time metric, allowing the fitness function

to instead focus on other design features. It will be shown in the following chapters that like the

fitness function itself, the death penalty structure must be fine-tuned somewhat to provide the

desired performance.
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Chapter 3

Control Law Gain Optimization

3.1 Overview

While the central focus of this dissertation is on a new design methodology known as location-

scheduled control, it is worthwhile to begin with a motivating example for the use of GAs as a

design tool. To that end, this chapter is concerned with optimizing the gain parameters for a

spacecraft undertaking a detumble manuever, as described in Section 1.5.3. This example, which

is concerned with tuning gain parameters only, provides a foundation for the more complex design

problems undertaken later in this work. As outlined in the Introduction, numerous strategies exist

for tuning controller gain parameters, but many of them are not applicable to the general rotation

problem considered in this chapter. Barring the use of these various strategies, a less elegant

approach is to simply test every possible design combination in simulation, seeking the optimum.

While such an exhaustive search approach will ultimately yield a globally optimal solution (in terms

of the problem under study), it is infeasible for very large design spaces. The space of candidate

gain values associated with the controller under study is quite large, and as such exhaustive search

of all candidate solutions is intractable.

This problem is an apt candidate for a GA-based approach, but it would be helpful to have

a second design methodology against which to compare the performance of the GA. For this case

study (and the other examples presented throughout this dissertation) the GA design strategy

is compared to an “informed” trial-and-error search. Absent a particular design tool, a control

systems engineer would undertake any controller optimization problem by tuning gain parameters
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through a trial-and-error search, in which gains are tuned based on the response observed either

in simulation or through hardware tests. In a GA the observed response of the system is assessed

using a fitness function, and throughout this dissertation the same fitness functions will be used to

rate both GA-derived design solutions and those obtained via trial-and-error. A major advantage

of the trial-and-error approach is that it allows the engineer to bring their full breadth of knowledge

to bear on the problem at hand, as opposed to a GA which only can assess the value of a given

design based on the fitness scores. However, trial-and-error tuning can be quite slow because it

requires one engineer to test one gain solution one at a time and then make an informed guess

about what the next test values should be. Both the time required by each design approach (GA

vs. trial-and-error) and the optimality of the selected designs will be considered in the application

examples that follow.

3.2 The Hawai’iSat Spacecraft

This chapter uses as an example the Hawai’iSat-1 spacecraft, a small (75 kg) spacecraft that was

designed to operate in low Earth Orbit (LEO). A collaboration between the University of Hawai’i and

NASA Ames Research Center, Hawai’iSat was to be tasked with observing certain characteristics of

the Earth’s oceans by means of a hyperspectral imager. The overall spacecraft design matured as

far as the Critical Design Review, and in this work the commerically-available sensors and actuators

from that design inform the spacecraft simulation. In particular, the spacecraft was equipped with

three magnetic torque rods and one reaction wheel for control, as well as a three-axis gyroscope, a

digital magnetometer, and analog sun sensors for attitude determination. For the purposes of this

research only the attitude control problem will be considered; it is assumed that full state feedback

is available.

Using a control algorithm first presented in [32], the spacecraft must track a time-varying attitude

and maintain a constant angular velocity. This is a typical maneuver for a spacecraft operating

in LEO, in which it can be desireable for the body-fixed B frame to track the LVLH orbit frame,

which itself rotates about the inertial N frame. By tracking the attitude of the LVLH frame it is

possible for nadir-facing instruments on the spacecraft (such as the Hawai’iSat hyperspectral imager)

to continuously observe the surface of the Earth. The observation maneuver is accomplished by
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rotating the spacecraft body frame at a rate of Ω0 about a specific body-fixed axis. Recall from

the Introduction that Ω0 is the orbital angular velocity of the spacecraft, which is the rate at

which the LVLH frame orbits the N frame. The challenge for the control algorithm is to drive the

spacecraft from an arbitrary initial state to tracking the LVLH frame in the presence of actuator

saturation constraints and environmental disturbance moments. In particular, the torque rods

used to provide the majority of the control torque for the spacecraft are capable of generating

approximately 1.2 × 10−3 Nm of torque about each axis, and this saturation limit will be applied

to the control algorithm.

The stability proof presented in [32] levies no requirements as to the inertia properties of the

spacecraft, and the controller in question has been applied to a wide range of spacecraft sizes [32,34].

In this research we use the inertia tensor for the Hawai’iSat spacecraft as modeled by the design

team, with J = diag

(
5.69 5.69 4.26

)
kg m2. As depicted in Figure 3.1, this is the inertia tensor

for a cylindrically shaped spacecraft measuring 0.66 m in diameter and 0.77 m tall.

Figure 3.1 – The Hawai’Sat Spacecraft with the axes of the body-fixed reference frame B shown.

3.3 Candidate Control Law

The nonlinear control law that is studied in this chapter was originally developed by Dr. Amit

Sanyal and Dr. Nalin Chartuvedi in [32], and was selected for use in the Hawai’iSat-1 mission.

While many typical spacecraft applications make use of simpler control algorithms (such as a PID

controller), the stability properties of this controller made it an ideal candidate for the large angle
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rotational maneuvers that were anticipated during the mission. Past research [32, 33] has shown

that the controller under study is capable of almost globally stabilizing the attitude dynamics of a

spacecraft that is acted upon by environmental disturbances. With stability established, the task

for the GA is to determine what gain values result in the best performance of the spacecraft when

performing the attitude tracking maneuver. It is important to observe that no accomodation is

made for actuator saturation directly in the control algorithm, and as such the genetic algorithm

will be used to impose such actuator restrictions. This is accomplished using a death penalty, which

will be described in greater detail in the next section. The control law to asymptotically track the

desired attitude and angular velocity of the spacecraft is defined as

τ = −Lωe + JQT ω̇d + (QTωd)×JQTωd + φ′(trace(K −KQ))

[k1e
×
1 Q

T e1 + k2e
×
2 Q

T e2 + k3e
×
3 Q

T e3]−Mad(R)−Mg(R)

(3.1)

Note that the function φ(·) in (3.1) is a C2 function used in the stability proof detailed in [32],

which is based on Lyapunov methods [41]. While it is beyond the scope of this dissertation to

fully replicate the proof of almost global stability for this controller, some interesting properties of

Equation (3.1) are discussed here.

Let L and K be positive definite control gain matrices, with the restriction that the diagonal

elements of K must be non-equal (e.g. k1 6= k2 6= k3). As seen in Equation (3.1) the gain matrix L

operates on the angular velocity error ωe and the gain matrix K operates on the angular position

error Q. Note also that the output control law is dependent upon the desired angular velocity ωd

and angular acceleration ω̇d, and that the attitude-dependent aerodynamic drag moment Mad and

the gravity gradient torque Mg are included directly in the control algorithm. This implies that the

ADCS is capable of resolving the attitude of the spacecraft and feeding that attitude forward to the

controller in order to calculate estimated values of the two disturbance moments. This is not an

unreasonable assumption, given that typical spacecraft microprocessors are capable of generating

state estimates at rates of 4 Hz and higher. Based on the proof presented in [32], it is known that

(Q,ωe) = (I, 0) is an asymptotically stable equilibrium of the closed loop system consisting of the

dynamic and kinematic equations of motion (1.1) and (1.4) and the control law (3.1), with a domain
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of convergence that is almost global on the state space of attitude motion.

In this research we restrict both K and L to being diagonal positive definite matrices. While the

original stability proof requires that K be diagonal [32], no such restriction exists for L. However, it

is possible to use a diagonal version of L without loss of generality by a change of body coordiante

frames. For example, let R1 be a rotation matrix from the body frame B to a body frame B1.

Then for a general torque vector applied in each body frame we have the relationship τ1 = R1τ

and R1Lωe = R1LR
T
1 (R1ωe) = L0(R1ω1), where L0 = R1LR

T
1 is diagonal. Reduction of the gain

matrix L to a diagonal 3 × 3 matrix results in a total of six gain terms that need to be optimized

for the detumble maneuver under consideration. This is by no means a trivial space of candidate

designs, however it is somewhat less complex than would be the case for a general positive definite

choice of L.

3.4 GA Implementation

Prior to implementing the GA for the gain tuning problem considered here it is necessary to develop

a chromosome structure that represents the candidate controller solutions. Referring back to the

control law of Equation (3.1), there are six gain terms to be tuned, three each in the gain matrices

K and L. Based on preliminary testing of the controller in simulation, the GA will test gain values

between 0.0001 and 0.1. The magnitude of these gains might seem relatively low, but it was found

that gains in this range gave rise to controller solutions less likely to violate the actuator saturation

death penalty. If six bits are used to encode each gain term (resulting in 26 = 64 increments), a

resolution of 0.00016 can be achieved by evenly dividing the gain interval of 0.0001 - 0.1 into 64

steps. It is interesting to note that this is a similar gain resolution as was used in [14], where a

2 × 4 LQR gain matrix was tuned using a GA. However, in that research, the gain terms were

allowed to vary between -1 and 1, while Equation (3.1) requires non-negative gains. Using six bits

per gain term results in a chromosome that is 36 bits long, where each bit represents a part of the

binary representation of a gain value. There are 64 possible gain values for the six different gain

terms, resulting in more than 68 billion (646) design solutions. A visualization of a representative

chromosome for the current problem is given in Figure 3.2.
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Figure 3.2 – Visualization of the chromosome structure used for the Hawai’iSat-1 gain tuning problem.

3.4.1 Fitness Function Design

The fitness function that will be used to assess the performance of each controller design is similar to

the general equation presented in Chapter 2 of this dissertation, and was first implemented in [42].

This function rewards controller designs that result in the minimum possible combination of settling

time (Ts) and the amount of control effort expended (Ce), such that

f = −(Ts + βCe) (3.2)

The desire to balance minimal settling time against minimal control effort is a benchmark prob-

lem in spacecraft engineering [47], however for multi-axis rotation problems the standard definition

of settling time cannot be applied. In this work we define settling time in terms of the principal

axis of rotational error ζ, which can be extracted directly from the attitude error rotation matrix Q

using Rodrigues’ formula [5]. A system is considered to have settled when the norm of the attitude

error vector ζ falls below a certain reference level, e.g.

‖ζ‖ < ‖ζref‖ (3.3)

where ζref is determined from an attitude error reference matrix Qref , defined as the composition

of three principal rotations about each axis in an amount of 0.1◦:

Qref = R1(0.1
◦) ·R2(0.1

◦) ·R3(0.1
◦) (3.4)

Thus, a system is said to have settled when the error in the attitude of the spacecraft falls within

a cube of 0.1◦. Note that this is equivalent to ‖ζref‖ = 0.003. The total control effort expended

during a maneuver is calculated as the L1 norm of the total torque produced by the actuators, with

Ce defined as
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Ce =
∑
i

‖τi‖ ·∆ti (3.5)

The i subscript in (3.5) denotes the ith time step of the simulation and the overall value of

Ce is given in units of Nms. A non-zero weight factor β is included in Equation (3.2) to allow for

tuning of the relative importance of the two performance metrics, as well as to roughly account for

unit-based differences in the magnitude of these metrics. Thus, if a spacecraft designer was more

concerned with minimizing the amount of control effort expended, it would be possible to increase

β to penalize designs which require a higher amount of control effort. Regardless of the value of β,

the most desireable controller design will be that which results in the largest (least negative) fitness

value. This results from the smallest possible combination of Ts and Ce. Genetic algorithm search

results will be presented initially for β = 1 and for a value of β that has been selected to roughly

balance the magnitude of the two performance metrics.

As mentioned previously, the fitness function of (3.2) is combined with a death penalty acting

on the maximum control torque provided by the control actuators. This death penalty verifies that

the controller solution never requires more than the maximum available control torque that the

actuators can produce. For this research the Hawai’iSat spacecraft model was simplified slightly

by only considering the magnetic torque rods as available actuators. The selected torque rods are

capable of producing a magnetic dipole moment of 25 Amp m2, which for a circular LEO orbit of

600 km is equivalent to approximately 1.2× 10−3 Nm of torque about each axis. For each member

of the design population the death penalty first checks to make sure that no value greater than this

maximum torque is ever required during the MATLAB simulation, and if true allows that specific

design to be evaluated by the fitness function. In this way, the genetic algorithm is capable of not

only ensuring that the actuator saturation limit is not violated, but also selecting a controller which

will yield ideal system peformance by means of the fitness function.
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3.5 Numerical Simulation

3.5.1 Simulation Description

For the purposes of this case study the spacecraft is initially rotated 1◦ about an arbitrary principal

axis of rotation and has zero angular velocity in the B frame. This initial state is analagous to that

which may be achieved after a spacecraft has completed the “detumble” phase of operations, which

was described in the Introduction. In this research the principal axis of the initial rotational error

is defined as

λ̂ =
1√
3

[
−1 1 −1

]T
(3.6)

which necessitates rotation about all three body-fixed axes. It is the job of the controller to drive

the spacecraft from this initial error state to the desired state. As described earlier, the desired

angular velocity of the spacecraft is ωd =

[
0 Ω0 0

]T
(rad/s), which results in a time-varying

desired rotation matrix Rd. Since a constant angular velocity about the b̂2 axis is equivalent to a

time-varying principal rotation about this axis, Rd can be defined as [13]:

Rdi =


cos(θi) 0 sin(θi)

0 1 0

−sin(θi) 0 cos(θi)

 (3.7)

where θi = Ω0 · ti, the angle of rotation at the ith time step. When this desired state has been

achieved the spacecraft will be holding its alignment with the LVLH frame as that frame orbits the

Earth.

Numerical simulation of the spacecraft system is accomplished using a previously-reported Lie

group variational integrator (LGVI) [20]. LGVI-based routines have been shown to have superior

numerical properties compared to traditional Runge-Kutta methods, in that the orthogonality of

the rotation matrices is preserved throughout the simulation [16]. This integrator, based upon a

discretization of the Lagrange-D’Alembert principle, has previously been used for spacecraft rota-

tional motion simulations in [32,34]. The discrete-time equations that govern the rotational motion

of the spacecraft in this integration scheme are
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FkJ − JF T
k = h(Jωk)× (3.8)

Rk+1 = RkFk (3.9)

τk = 0.5(τ(Rk, ωk) + τ(Rk+1, ωk)) (3.10)

Jωk+1 = F T
k Jωk + h(Mg(Rk+1) +Md(ωk) + τk) (3.11)

In reviewing Equations (3.8) - (3.11) it might become apparent how they represent a discrete-

time analogue of the equations of motion presented in the Introduction. Specifically, Equation (3.10)

is the counterpart to (1.1) (where h is the time step of the discrete integrator), (3.9) is the counter-

part of (1.4), and (3.8) calculates the discrete variation between time steps, denoted Fk. Note that

in (3.8) the value J is a specialized version of the inertia matrix J such that J = 1
2trace(J)I − J .

The LGVI scheme is implemented in MATLAB and each candidate controller design is simulated

for 500 seconds (spacecraft time).

Recall that two different strategies are used to determine the best possible combination of gains

for the control task described above. The first method is to apply the genetic algorithm to the gain

tuning problem using the fitness function (3.2) and death penalty as a guide for desired performance.

The second method is the informed trial-and-error approach, in which a control systems engineer

tunes the elements of the gain matrices based on the system behavior observed in simulation. An

engineer undertaking a trial-and-error approach to gain tuning necessarily has access to the same

information provided by the fitness function, and fitness function scores will also be reported for

the trial-and-error design method.

In the trial-and-error tuning approach a control systems engineer is given three hours to tune the

gain variables by hand. Three hours were allotted for this method because that was approximately

the amount of time required for the GA to execute a standard trial on an AMD Athlon 5600 desktop

PC. For the trial-and-error method, both gain matrices are initialized to 0.05 · I3x3 (essentially the

middle of the admissable gain range) and then numerous simulation iterations are undertaken. After

each simulation run, gain variables are either increased or decreased depending on the observed time-

response of the spacecraft. The proportional gain matrix K is adjusted first, and then the derivative

gain matrix L is adjusted as appropriate. The nonlinear controller under study is analogous to a
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PD-type controller, but the overall behavior is certainly not intuitive. The approach of adjusting

the K matrix first and then the L matrix is an attempt to tune the proportional response prior

to the derivative response, but other strategies may be equally valid. In contrast to this directed

gain tuning approach, the GA will randomly change any gain within the controller structure as

dictated by the crossover and mutation probability rates. While some poor-performing solutions

will be created, this approach generally leads to better-performing solutions as the design population

evolves.

3.5.2 Simulation Results

Four different genetic algorithm trials were initially undertaken, the results for which are presented

in Tables 3.1 and 3.2. For these preliminary tests the weight factor within the fitness function was

held constant at β = 1. The variables of interest are the design population size (Pop), the number

of generations for which the algorithm was run (Num), and the crossover probability (Xover). The

values of these variables, given in Table 3.1, follow the basic suggestions provided in [9]. For all of

these simulations the mutation rate was held constant at 0.001%, also replicating the work of [9].

The outputs that are recorded for these GA trials are the maximum fitness value achieved (fmax),

the settling time (Ts) in seconds, the control effort (Ce) in Nms, and the gain values that resulted

in these performance attributes (given in Table 3.2).

Table 3.1 – GA performance for four different trials, with the fitness function weight factor set to β = 1.

Run Pop Num Xover fmax Ts (s) Ce (Nms)

1 40 20 80% -205.5 205.4 0.12

2 40 40 70% -187.2 187.1 0.12

3 40 50 70% -179.5 179.4 0.1

4 50 40 70% -176.2 176.1 0.1

As can be seen in Table 3.1 the best-performing controller solution was achieved using a pop-

ulation of 50 designs evolved over 40 generations. The maximum fitness score is f = -176.2, corre-

sponding to Ts = 176.1 s and Ce = 0.1 Nms. The gain values that resulted in this performance

are K = diag

(
0.0604 0.0017 0.0302

)
and L = diag

(
0.0968 0.0968 0.0984

)
. A component-

wise time history of the spacecraft angular velocity and the commanded control torque for this
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Table 3.2 – Gain values corresponding to the four GA trials undertaken with β = 1.

Run k1 k2 k3 l1 l2 l3
1 0.0445 0.0397 0.0207 0.0715 0.0905 0.0905

2 0.0619 0.0255 0.0175 0.0937 0.0921 0.0715

3 0.0651 0.0112 0.0207 0.0905 0.0984 0.0937

4 0.0604 0.0017 0.0302 0.0968 0.0968 0.0984

best-performing controller design are presented in Figure. 3.3.

Figure 3.3 – Angular velocity (top plot) and control torque (bottom plot) as a function of time for the
best controller design found using the GA with β = 1.

The efficacy of the GA for gain tuning is compared to that of the informed trial-and-error

approach with the fitness function weight factor set to β = 1. Using trial-and-error search, the

best-performing gain values found were K = diag

(
0.0175 0.02 0.025

)
and L = 0.1 · I3×3. For

this gain combination a fitness score of f = -186.96 was achieved, resulting from a settling time of

Ts = 186.9 s and a control effort of Ce = 0.0626 Nms. It is interesting to note that the hand-tuned

gains resulted in the system taking 10 seconds longer to settle, but only required approximately

60% of the control effort needed by the GA-derived solution. The extent to which settling time

and control effort must be balanced is up to the engineer concerned with a specific application,

but it is worth noting that from the standpoint of overall fitness score the GA did outpeform the

hand-tuning method.
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Referring back to the best-performing design found using the GA, there is a large difference in

the numerical value of settling time and the amount of control effort expended. The difference in

magnitude between Ts and Ce (176.1 vs. 0.1) indicate that it might be worthwhile to increase the

weight factor β in order to force the fitness function to more evenly balance between the contribution

from the two performance metrics during the evolution of the design population. For example, using

β = 1000, a typical value of βCe (as calculated within the fitness function) might be on the order

of 100 Nms as opposed to 0.1 Nms. If the fitness function is trying to minimize the combination of

settling time and control effort this should have the effect of causing the GA to favor designs with

a longer settling time that expend less control effort. To test this idea, the same four GA trials

were re-run with β = 1000, the results of which are reported in Tables 3.3 and 3.4. Note that in

Table 3.3 the value of β is included in the value of βCe to reflect the balance that the GA is being

asked to make via the fitness function. As such, one must divide by 1000 to see the value of Ce

associated with a specific design solution.

Table 3.3 – GA performance for four different trials when the fitness function weight factor has been
increased to β = 1000.

Run Pop Num Xover fmax Ts (s) Ce (Nms)

1 40 20 80% -270.38 237.5 32.88

2 40 40 70% -403.8 268.9 135.1

3 40 50 70% -289.7 245.9 43.8

4 50 40 70% -270.36 230.8 39.56

Table 3.4 – Gain values corresponding to the four GA trials undertaken with β = 1000.

Run k1 k2 k3 l1 l2 l3
1 0.00049 0.0112 0.0096 0.0952 0.0937 0.0826

2 0.0017 0.035 0.0604 0.0794 0.0715 0.0889

3 0.0001 0.0033 0.0223 0.0952 0.081 0.0921

4 0.0096 0.0175 0.0064 0.0984 0.0889 0.0905

As can be seen in Table 3.3, the design solution achieved from a population of 50 designs evolved

over 40 generations is just barely the best overall performer. For this trial, in which f = -270.36,

the value of settling time is now only about 6 times greater than that of control effort, as opposed

to Ts being nearly 2000 times larger than Ce in the original GA trials. Thus, the weight factor β is
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having the intended effect, in that the fitness function is now favoring design solutions which give a

more even balance of the two performance metrics. It is important to note that it is not appropriate

to compare the values of fmax for β = 1 and β = 1000. By adjusting the weight factor β the basic

structure of the fitness function has now changed, and the GA is trying to optimize something

different in each test case. Instead, one should compare values of Ts and Ce across the two trials,

as these do not change regardless of the structure of the fitness function. The time response of the

best-performing design solution with β = 1000 can be seen in Figure 3.4.

Figure 3.4 – Angular velocity (top plot) and control torque (bottom plot) as a function of time for the
best controller design found using the GA with β = 1000.

The design space under study in this research is obviously quite complex. There are six gains

to be optimized, all of which can take on a large range of values. While it is essentially infeasible

to exhaustively test every admissable design solution in this problem, it is possible to test cross-

sections of the design space to better understand the relationship between certain gain terms and

the resulting fitness value. The approach taken was to set β = 1 and hold all gain values constant

except for two, and then to vary these two gains across all admissable values. In the first test, all

gain values were held to their optimal values as dictated by the best-peforming GA design (with

β = 1) except the first two entries of the proportional gain matrix K (k1 and k2). This results in a

controller with gains K = diag

(
k1 k2 0.0302

)
and L = diag

(
0.0968 0.0968 0.0984

)
, where

k1 and k2 are varied between 0.0001 and 0.1 using all 64 possible values. By calculating the fitness
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value for each possible gain combination, it is possible to generate a surface in 3D space (seen in

Figure 3.5) that shows how the fitness value varies with changing values of k1 and k2. The highest

fitness score found in this cross-sectional optimization test is f = -165.53, corresponding to Ts =

165.4 s and Ce = 0.13 Nms. This performance was achieved using k1 = 0.0449 and k2 = 0.0641.

Looking at Figure 3.5, there is one point (k1 = k2= 0.0001) in Fig. 3.5 which has an extremely low

fitness value. Recall that one requirement introduced in the stability proof of [32] was that all values

of the gain matrix K of in Equation (3.1) be non-equal. Given that this gain combination violates

that requirement, the extremely poor fitness value may not be surprising. Logic was written into the

genetic algorithm to discard randomly generated values of K that violated the stability requirements

of (3.1), thus avoiding any such outliers.

Figure 3.5 – Fitness value as a function of gain combination when all gains are held constant except
k1 and k2 and these gains are uniformly varied between 0.0001 and 0.1.

A similar test to determine the relationship between the fitness value and certain gain terms

was performed for the derivative gain matrix L, in which the gain matrices were set to K =

diag

(
0.0604 0.0017 0.0302

)
and L = diag

(
l1 l2 0.0984

)
for all possible values of l1 and l2.

Seen in Figure 3.6, there are no discontinuities in this fitness surface because the only requirement

imposed on the gain matrix L is that it be positive definite. Thus, all gain combinations within

the gain range being tested are valid solutions for the controller design problem, in that l1 6= 0

and l2 6= 0. For this test the maximum fitness value achieved is f = -175.5, corresponding to a
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settling time of Ts = 175.4 s and Ce = 0.1 Nms. This performance was accomplished with the two

derivative-type gains set to their maximum value, such that l1 = l2 = 0.1.

Figure 3.6 – Fitness value as a function of gain combination when all gains are held constant except l1
and l2 and these gains are uniformly varied between 0.0001 and 0.1.

3.6 GA Performance Assessment

The results presented in the preceding section indicate that the GA-based gain tuning approach

yields comparable system performance as compared to a trial-and-error strategy. For the study

in which β = 1 the GA was able to find a design with a better maximum fitness score, and was

also able to search a broader swath of the overall design space. As a point of reference, during the

roughly three hour execution time of the GA 2000 design solutions were tested, while during the

informed trial-and-error approach approximately 120 designs were tested. Furthermore, during the

three hours in which the GA was executing no human involvement was necessary, which means that

in a real-world project that engineer could be performing other tasks during the GA design process.

It is noteworthy that the hand-tuned solution did yield a design which expended less control effort.

The need to minimize either settling time or control effort expended is obviously a choice of the

control systems engineer, and depends on the application. For the Hawai’iSat-1 mission it was

necessary to slew the spacecraft around to point the hyperspectral imager to the required location

in a relatively short amount of time, and thus settling time was typically prioritized higher than
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control effort expended. Depending on the specific application in question, a reverse set of priorities

may in fact hold.

The relative importance of settling time and the amount of control effort expended also inform

the selection of the weight factor β. Turning this weight factor up to 1000 from the original value of

1 created a more even balance between settling time and control effort (approximately 6:1), which

might be desireable for a certain application. For Hawai’iSat the controller designs resulting from

using β = 1 were appropriate for the specific needs of the tracking maneuver, but the same might

not be true for other maneuvers or different spacecraft. The weight factor within the fitness function

is a powerfull tool for balancing multiple performance metrics, but the specifics of that balance must

be the responsibility of the design engineer.

3.7 Sensitivity Analysis

An important consideration for any controller design scheme is that of sensitivity of the solutions

to changes in system parameters. One system model was used to test all of the controller design

solutions within the GA population, and it is certain that some system parameters will differ

between the spacecraft simulation and the real world hardware. To better understand what impact

parameter variations have on the GA-derived controllers two different tests were undertaken. In

the first test, the entries of the diagonal inertia tensor J were varied ±2.5%, ±5%, ±7.5%, ±10%,

and ±12.5%. The spaceraft simulation was then re-run for the tracking maneuver using the gains

found via the GA for each of the perturbed values of J. A plot of the maneuver settling time and

amount of control effort expended for the different changes in J can be seen in Figure 3.7.

As can be seen in Figure 3.7, both Ts and Ce tend to get better for decreasing values of the

inertia tensor J while they get worse for increasing values of J. This follows intuition, in that the

same amount of control torque is being applied to a system that now has less mass, and thus the

spacecraft can be driven more quickly to the desired final state without any “cost” to the amount

of control effort expended. It is however interesting to see the large jump in the value of Ts when

the inertia perturbation is increased from 10% to 12.5%. Apparently, when this much of a mass

increase is seen the selected gain combination is no longer effective for the tracking maneuver.

A similar sensitivity study was undertaken for variations to the drag coefficient of the spacecraft
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Figure 3.7 – Settling time and amount of control effort expended as a function of percentage difference
in the inertia tensor values.

Cd. Referring back to Equation (1.2), the drag coefficient has a strong impact on the value of the

aerodynamic disturbance moment Mad, but this is a parameter that is very hard to estimate for

LEO spacecraft. Following the suggestion of [45] a value of Cd = 2 was used in all of the original

spacecraft simulations in this research. To understand what impact variation in Cd has on controller

performance, the drag coefficient was varied from 0.8 to 2.6 in increments of 0.2, and the spacecraft

simulation was re-run. Once again, the best-performing controller gains from the GA study with

β = 1 were used. Interestingly, varying the drag coefficient Cd had an essentially undetectable

impact on the performance metrics Ts and Ce. This implies that the drag moment Mad potentially

has a lower impact on the overall performance of the spacecraft than anticipated. In terms of the

elements of the fitness function, the aerodynamic drag moment is more “detectable” to the GA

through the Ce metric, in that increasing Cd will increase the drag moment (and thus the required

control torque) with an essentially linear relationship. In contrast, changes to Cd will more subtly

impact Ts, given that this disturbance moment is on the order of 10−5 Nm, which leads to a lower

overall change in the observed fitness score.

One final aspect of parameter sensitivity that is of interest to a control systems designer is that

of sensitivity to changes in the gain values themselves. Referring back to Figures 3.5 and 3.6, it is

important to note first of all that there are no gain combinations that result in the system becoming
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unstable. On the plot of k1 and k2 there is one outlier point, but this data point violates the original

stability proof outlined in [32] and thus can be discarded. Instead, one can use Figures 3.5 and

3.6 to study how changing gain values will affect the overall fitness of a controller solution. For

example, looking at Figure 3.6 one sees that there are plateaus of constant fitness value whereby

changes in l1 or l2 do not impact the performance of the spacecraft system. This implies a certain

measure of robustness to variations in gain values for the system under study.

In contrast, the plot of variations in k1 and k2 show ridges of approximately constant fitness

value. Thus, varying k1 or k2 might result in a decrease in the spacecraft system performance, but

none of these ridges are extremely steep. Furthermore, this gain sensitivity is not a feature of the

GA-based approach, it is a function of the design problem itself. A human control systems engineer

would also encounter sensitivity to changes in the elements of K after selecting the best-performing

gain values for implementation. This sensitivity to gain changes arises from the physical system and

the controller under study, not the gain tuning methodology. It is very important to remember that

the surfaces seen in Figures 3.5 and 3.6 are only one cross-section of a much more complex multi-

dimensional design space, but studying these plots does provide some insight into the sensitivity of

the controller gains.
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Chapter 4

The Location-Scheduled Control

Methodology

The results in the preceeding chapter demonstrate that a genetic algorithm can be an effective design

tool for the challenging problem of optimizing controller gain parameters. Using these results as a

foundation, in this chapter the GA-based design approach will be extended to the broader problem

of location-scheduled control, whereby controller gains are optimized in parallel with other ADCS

design parameters. Once again, the performance of the genetic algorithm will be compared to that

of an informed trial-and-error approach, however in this chapter these results will also be compared

against the globally optimal solution. By considering a relatively small design space, it is possible

to exhaustively test every candidate design in order to determine the true optimum. The GA,

trial-and-error, and exhaustive search all will be evaluated for both the amount of time required to

carry out a search and for the performance of the selected design.

4.1 Nanosatellites for Scientific Research

A key motivating factor behind the location-scheduled control concept is the growing field of space-

craft that are capable of being reconfigured either in between missions or on-orbit. Modular space-

craft which can be easily reconfigured in between missions have the potential to drastically reduce

the development lifecycle, while spacecraft that can reconfigure on-orbit can undertake a wider array

of mission operations. Both of these reconfiguration approaches are being considered for spacecraft
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that adhere to the CubeSat standard [21], due in part to the natural discretization of the spacecraft

into 1U modules. This chapter applies the location-scheduled control concept to the dual problem

of tuning gain parameters and the physical location of ADCS components, with the objective of

enabling efficient reconfiguration of a 6U nanosatellite in between missions.

The 6U form factor was selected for study due to its potential for performing a wide array of sci-

ence missions. As described in the Introduction, the recent history of nanosatellites largely consists

of spacecraft that were either passively stabilized or which simply demonstrated a specific technol-

ogy concept. While such missions are valuable for advancing the state of the art of nanosatellites, it

is of interest to NASA and other organizations to perform detailed scientific research in these small,

comparatively inexpensive spacecraft. In contrast to the typical 3U nanosatellite, a 6U spacecraft

could likely allocate as much as 4U of volume for a science payload. This volume could be used

for a miniature Earth-imaging payload, complex astrobiology experiments, or even astrophysics

payloads. These complicated science missions are made possible in part by the basic increase in

available volume, and in part by recent advances in miniaturized attitude determination and control

hardware.

The reference case that will be considered in this chapter is a 6U nanosatellite in which 4U of

volume have been allocated for an ‘L’-shaped science payload. As can be seen in Figure 4.1, it

is assumed that 1U of volume is reserved for the spacecraft bus and 1U of volume is reserved for

an ADCS module (the darker- and lighter-shaded cubes in the figure). Advances in plug-and-play

technologies [15] make it possible for a spacecraft designer to create a self-contained ADCS unit that

can be used for various missions without redesign. The plug-and-play controller will be placed in one

of two available locations, based on the optimization criteria included within the fitness function.

The ability to rapidly redesign the overall spacecraft layout by repositioning the ADCS module

is critical to reducing spacecraft development time, and is a key motivator for location-scheduled

control.

4.2 Location-Scheduled Control

The objective of location-scheduled control (LSC) is to reduce the amount of time required to

develop the ADCS of science missions being undertaken by reconfigurable spacecraft by creating a
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Figure 4.1 – The conceptual 6U spacecraft in which 4U of volume are allocated for the science payload
in a ’L’ shape.

family of ADCS designs a priori. This collection of designs is generated by reusing a predetermined

combination of sensors and actuators that are selected to support as wide a range of missions as

possible while still adhering to given size, mass, and power budgets. If this hardware combination

can be modularized to exist as a discrete unit, then it becomes possible to relocate the unit within

the overall spacecraft volume with relative ease. As mentioned in the previous section, advances in

spacecraft plug-and-play technologies [15] and standardization of hardware interface components [12]

make it a reasonable assumption that the ADCS can be packaged as a discrete unit. When applying

LSC, this stand-alone ADCS unit is placed in numerous locations within the spacecraft and gain

values are tuned in simulation. This results in a location-based schedule of gains that can be

referenced as each new science mission becomes ready for implementation. A given allocation of

volume for the science payload results in a certain spacecraft layout, and based on the known

pointing requirements for that payload an engineer can look up the optimal ADCS configuration

from the location-based gain schedule.

In traditional ADCS design the science requirements of a specific mission levy pointing require-

ments onto the ADCS, which informs sensor and actuator selection. Once the ADCS hardware

has been chosen, an appropriate control algorithm is selected and tested. In contrast, the location-

scheduled approach to ADCS design can be thought of as a two phase process (depicted in Fig-

ure 4.2). In the first phase, a general purpose ADCS unit is designed by selecting a suite of sensors

and actuators that would be appropriate for a class of science missions. A number of generic science
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payload layouts are then considered, and the controller gains/ADCS location are tuned based on

the unique dynamics of each layout and anticipated performance requirements. In the second phase

of the process, one of the previously tested spacecraft configurations is selected based on the needs

of the current science mission. The performance of this configuration is verified, and any necessary

gain tuning is undertaken. As long as the catalogue of spacecraft configurations satisfies the needs

of the science payloads, the developer of the reconfigurable spacecraft need not return to the first

phase of the design process.

Figure 4.2 – A comparison between traditional ADCS design and location-based ADCS design.

In order to use the same ADCS unit to control multiple missions, it is necessary to determine

the best possible combination of control unit location and control law gain values for each of the

possible science payloads given that they have different inertia properties and likely different pointing

requirements. This can be done in simulation prior to a mission being undertaken, meaning that

during the actual development period the ADCS designer need only look up the baseline design

for the given layout and pointing requirements. Some real-world tuning of gains will inevitably be

required due to system and environmental uncertainty, but the overall amount of time required for

ADCS development will be shortened substantially.

No matter what combination of actuators and sensors are chosen for the stand-alone ADCS unit

there will be certain missions for which the given ADCS design simply cannot supply the necessary
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control authority. One advantage to developing a catalogue of ADCS designs in simulation is that

it also provides an envelope of capability, allowing the ADCS designer to see what range of missions

a certain control unit design can support. Additionally, the basic LSC concept can be extended to

multiple ADCS units, and a spacecraft developer could create multiple gain schedules for each level

of control authority enabled by a certain hardware combination. This also provides flexibility in

terms of mass, power, and cost budgets, as the appropriate control unit (and its gain schedule) can

be chosen based on the needs of the mission.

4.3 Detumble Maneuver Optimization

4.3.1 Fitness Function Selection

The location-based schedule of gains is generated for a particular nanosatellite form factor by means

of a GA that is similar to the one presented in Chapters 2 and 3. It is necessary to augment the

chromosome structure to include digits representing the possible spacecraft configurations, but the

same concepts of crossover, mutation, and natural selection by means of a fitness function are the

same for the LSC design problem. In fact, the same peformance metrics presented in Chapter 3,

settling time (Ts) and control effort expended (Ce), are also used for the fitness functions considered

here. To better understand the utility of the LSC approach two different fitness function structures

will be considered in this chapter. The first function is only concerned with control effort expended,

such that

f = −Ce (4.1)

Thus, a design that uses the least amount of effort to drive the spacecraft to the desired state

will have the least-negative fitness score and be more likely to be selected for reproduction. This

function is combined with a death penalty that operates on the settling time of the rotational

maneuver. In Chapter 3 it was necessary to define Ts in terms of the amount of time required for

the tracking error to drop below a certain level, and a similar approach is taken here. Since the

detumble maneuver drives this spacecraft to a known orientation and zero angular velocity after

initially starting from the maximum value of the rotational error ‖ζ‖, it is sufficient to say that the
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system has settled when ‖ζ‖ has decreased to 2% of its maximum value during the simulation run.

Once again this is not a traditional definition of settling time, but it is appropriate for the general

multi-axis rotation considered in this chapter. The death penalty that is paired with Equation (4.1)

discards any design that has not settled to the 2% metric by the end of the simulation run.

The second fitness function does not make use of the death penalty, however settling time has

now been incorporated directly into the function. The equation for this new function is

f = −(Ts + βCe) (4.2)

which is the same function used in Chapter 3 (with Ts defined as above), and once again β is

initially held equal to one. It is important to note that Equation (4.2) seeks designs which best

balance two competing peformance metrics, whereas (4.1) only minimizes one metric subject to a

hard bound on another metric (the death penalty). These are fundamentally different optimization

goals, which is part of the motivation for testing both of them in this first implementation of LSC.

4.3.2 Control Law Selection

For this application example the LSC design methodology will seek to optimize a detumble ma-

neuver. As described in the Introduction, a detumble maneuver is characterized by the spacecraft

having high initial angular velocity and an arbitrary rotation, and it is the job of the controller to

drive the spacecraft from this arbitrary state to a specified “rest” state. Numerous strategies exist

for accomplishing the detumble operation, but for the 6U spacecraft application one driving design

factor is is the ability to accommodate saturation of the control actuators.

The requirement that all attitude determination and control hardware be modularized to fit

within 1U of volume places stringent mass, power, and volume constraints on the attitude actuators,

which will in turn lead to constraints on the available control torque. In this chapter it is assumed the

spacecraft is being controlled via three mutually orthogonal reaction wheels, and that these wheels

cannot supply a torque greater than τmax. One approach to controlling the rotational motion of

a spacecraft subject to actuator saturation limits is proposed by Robinett, et al., in [28]. In this

work the authors present a two-step development for their control law which first considers rigid

body rotations without saturation restrictions, and then again with such restrictions imposed. In
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the course of synthesizing this controller the authors make use of the parameterized state space

R6 described in the Introduction, and the stability proof for this control law is referenced to that

parameterization, as opposed to the actual state space SO(3) × R3. In the absence of actuator

saturation, the feedback control torque is defined as

τus = J(Qω̇d − ω×Qωd) + ω×Jω − kσ̄ − Pωe (4.3)

where Equation 4.3 makes use of the attitude error matrix Q, the angular velocity error ωe, and

the skew-symmetric operator (·)×, all of which were defined in the Introduction. Additionally, the

vector σ̄ is the modified Rodrigues parameters (MRP) vector describing the error in the spacecraft

attitude. The MRP vector is defined in terms of the principle angle of rotational error φ and the

principle axis of roational error ζ, both of which were used in the preceding chapter and are defined

in [5]:

σ̄ = tan(
φ

4
)ζ (4.4)

The gain k in Equation (4.3) is a scalar gain operating on the error in spacecraft attitude, while P

is a 3× 3 positive definite gain matrix operating on the error in spacecraft angular velocity. Thus,

the feedback controller in (4.3) can be thought of as a PD-type control law (similar to that used in

the preceding chapter). The feedback control law in the absence of saturation restrictions (4.3) is

extended to consideration saturation effects as

τi =


τusi for |τusi | ≤ τmaxi

τmaxi · sgn(τusi) for |τusi | > τmaxi

(4.5)

Equation (4.5) is defined for each axis of the spacecraft (i = 1 − 3), and each reaction wheel

can in fact have a different value for the saturation torque τmax if necessary. For this research

the control saturation limit will be held constant at τmax = 4 × 10−3 Nm about all three axes.

This corresponds to the saturation limit of the Sinclair Interplanetary RW-0.03 reaction wheel, a

commonly used actuator in nanosatellite applications that has flight heritage on a recent CubeSat

mission [17]. While it is outside the scope of this dissertation to address this issue directly, it should
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be noted that there exist certain physical limitations to the trajectories that one can asymptotically

track when the controller of (4.3) is subject to known torque bounds. In essence, only certain

trajectories–those for which the attitude is varying somewhat slowly with respect to time–can be

asymptotically tracked using (4.5). The results presented in subsequent sections of this chapter show

that for the system in question the control law defined by Equation (4.5) can drive the spacecraft to

the desired state, but it should not be assumed that this same result would hold for other problems.

The stability proof presented in [28] is based upon Lyapunov’s direct method [41] on the space

R6, which is used to parameterize rigid body attitude motion. However, it is important to remember

that the equilibrium point (Q,ωe) = (I3×3,0) is not rendered Lyapunov stable by this control law.

In practice MRPs behave in much the same way as quaternions, and the controller presented in

(4.5) will also be subject to the unwinding phenomenon. This makes the selected control law

somewhat less desireable than that which was presented in the preceeding chapter, and in practical

spacecraft applications it may not be teneble to implement this controller. That being said, the

control law in question was selected for this first simulation-based test of location-scheduled control

since it accommodates for actuator saturation in a fairly straight-foward manner. That simplicity

is desirable when considering a first attempt at modularizing the spacecraft ADCS to be contained

within 1U of volume.

4.3.3 Problem Formulation

Referring back to Figure 4.1, there are two possible locations for the ADCS unit, corresponding to

the bottom-middle and bottom-rear cube positions in the 6U layout. Placing the ADCS module in

the bottom-middle cube location will be referred to as Configuration #1, while placing the ADCS

in the bottom-rear cube location will be designated Configuration #2. The task then is to find

the optimal combination of control unit location and control law gain values (as defined by the

fitness functions) for the detumble maneuver. For this example the spacecraft has an initial angular

velocity of ω =

[
0.0523 0.0523 0.0523

]T
rad/s in the body-fixed frame, which corresponds to an

angular velocity of 3◦/s about each body axis. This is a typical tip-off rate antcipated for the NASA

Ames Nanosatellite Deployer, which is currently scheduled for first flight in 2013. In addition to

this angular velocity, the spacecraft is initiallly rotated 20◦ about the same principal axis λ̂ that

was used in Chapter 3. The task for the controller is to drive the spacecraft from this high angular
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velocity and arbitrary rotation to the final desired state of Rd = I3×3 (e.g., the spacecraft body

frame B aligned with the LVLH frame) and zero angular velocity.

The last step before the GA can be executed is to define the chromosome structure for the LSC

design problem. Given that two locations for the ADCS unit are to be tested, a location within the

spacecraft can be represented with a single binary digit. A value of 1 corresponds to Configuration

#1, while a value of 0 corresponds to Configuration #2. Referring back to Equation (4.5), the

control law under study has one scalar gain and one 3 × 3 matrix gain. If a diagonal matrix is

selected for P then a total of four gain terms must be optimized. In this work the scalar gain k is

restricted to taking on integer values on the interval [1,15] while each element of the matrix P is

restricted to values in the interval [0.1,1.5] in increments of 0.1. These ranges of gain value can both

be represented using four binary digits, with the decimal interpretation for each gain in the matrix

P being divided by 10 to bring it into the range of [0.1,1.5]. Using one binary digit to represent

control cube location and four digits each to represent the gain values, a total of 17 bits are required

to define one candidate design. An example chromosome is depicted in Figure 4.3, where the first

bit defines control cube location, the next four bits define the value of k, the next four bits define

the first entry of the matrix P, and so on.

Figure 4.3 – Visualization of the chromosome structure used for the 6U controller optimization problem.

For the gain ranges defined as above, there are a total of 154 possible combinations of gain values.

When multiplied by the two different control cube locations, the full space of candidate designs has

101,250 members. This design space would increase in size if a higher resolution (or a greater range)

was desired for the gains. Given the relatively small global design space, an exhaustive search will

be carried out along with a GA-based search and an informed trial-and-error search to evaluate the

performance of the GA as compared to these alternative design methods.
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4.4 Simulation Results

The simulation results presented herein were obtained using a MATLAB simulation running for

30 seconds (spacecraft time). The rotational motion of the spacecraft was simulated using the

same LGVI scheme described in Chapter 3. Every candidate design was given the initial conditions

detailed in the previous section and then had its fitness evaluated using each of the two fitness

functions described above. Results were obtained using the informed trial-and-error method, an

exhaustive search of all possible design solutions, and the genetic algorithm. Direct testing of

all 101,250 solutions required 6.5 hours on the same desktop computer used in Chapter 3, while

the average execution time for a run of the GA was approximately 45 minutes. Following the

methodology presented in the preceding chapter, a control systems engineer was given 45 minutes

to find the best possible design solution using the MATLAB simulation. The trial-and-error search

was carried out by initializing the controller gains to k =1 and P = diag

(
0.5 0.5 0.5

)
and then

changing the gain values based on the observed time response. Depending on the performance of a

given design solution, the proportional gain k was tuned either up or down and the simulation was

re-run. Changes were also made to the derivative gain matrix P, and the location of the control

cube was sporadically changed to encourage a more diverse search of the possible solutions. The

informed trial-and-error process was repeated until changes in the gain values no longer yielded an

improved time response of the nanosatellite system.

The first approach used by all three design strategies to optimize the detumble maneuver was

the combined fitness function/death penalty structure. The fitness function of Equation (4.1) was

paired with a death penalty that eliminated any design that had not settled to 2% of the maximum

rotational error ζ by the end of the 30 second simulation. Using this combination of performance

metrics, the globally optimal design solution (found via exhaustive search) resulted in a fitness value

of f = -0.0237. This corresponds to 0.0237 Nms of control effort being expended and a settling time

of 29.8 seconds. This performance was achieved by placing the control cube in Configuration #1,

and using gain values of k = 7 and P = diag

(
0.8 0.3 0.5

)
. The component-wise time history

of both the spacecraft angular velocity ω and the commanded control torque τ are depicted in

Figure 4.4.

It is important to notice in Figure 4.4 that despite the fact that the spacecraft has completed
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Figure 4.4 – Component-wise time response of the spacecraft angular velocity (top plot) and com-
manded control torque (bottom plot) for the globally optimal solution found using f = -Ce.

the majority of its reorientation after approximately 3.5 seconds, there is still some residual angular

velocity that must be eliminated in order to achieve 2% of the maximum value of ‖ζ‖. This is

accomplished over a long period of time, leading to a settling time of 29.8 seconds. This very

long settling time still results in the globally optimal solution as per the definition of the fitness

function, but it is important to compare that performance against the other design strategies under

consideration. A comparison between the globally optimal solution found via exhaustive search, the

best-performing solution found using the GA, and the best-performing solution found using trial-

and-error search is given in Table 4.1. As seen in this table, the genetic algorithm far outperforms

trial-and-error search in terms of control effort expended. Recall that control effort is the only term

being operated on in the fitness function, and thus if one wanted to also impose a stricter settling

time requirement, it would be necessary to implement that change in the death penalty.

Table 4.1 – Comparison between best-peforming designs found using exaustive search, the genetic
algorithm, and trial-and-error tuning with f = -Ce

Method Config. # fmax Ts (s) Ce (Nms) k p1 p2 p3

Exhaustive 1 -0.0237 29.8 0.0237 7 0.8 0.3 0.5

GA 2 -0.0244 19.9 0.0244 9 1 0.3 0.7

Trial-and-Error 1 -0.0334 29.8 0.0334 8 0.4 0.4 0.4
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To further illustrate the differences between the best-performing solutions found for each design

strategy, the norm of the spacecraft angular velocity ω and the principal axis of rotational error ζ

are plotted for all three controller designs in Figure 4.5. Note that in this plot exhaustive search

is abbreviated as ‘ES’, genetic algorithm is abbreviated as ‘GA’, and trial-and-error search is ab-

breviated as ‘TE’. While the exhaustive search and genetic algorithm responses are quite similar to

one another, they both far outperform the trial-and-error design, which requires much more motion

from the spacecraft in order to drive it to the desired state.

Figure 4.5 – Comparison between performance results for all three design methods for f = -Ce.

For the fitness function f = −(Ts + βCe) (used without a death penalty) the globally optimal

design solution found via exhaustive search yielded a fitness value of f = -3.3247. This fitness value

results from a settling time of 3.3 seconds and 0.0247 Nms of control effort being expended. For

this solution the ADCS was placed in Configuration #2, and the gains were set to k = 0 and P

= diag

(
1.1 0.3 0.7

)
. It is interesting to see how drastically the settling time falls when compared

with the solutions achieved using f = -Ce, due largely to the direct inclusion of settling time into

the fitness function. The time-response of the globally optimal solution is plotted in Figure 4.6. It

is worth observing that in this case the controller once again follows a bang/bang response, however

now the spacecraft is clearly driven to its desired state in less than 3.5 seconds.

The performance of the genetic algorithm and trial-and-error search methods as compared to

exhaustive search of all design solutions for the second fitness function is presented in Table 4.2.
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Figure 4.6 – Component-wise time response of the spacecraft angular velocity (top plot) and com-
manded control torque (bottom plot) for the globally optimal solution found using
f = −(Ts + βCe).

Again, the genetic algorithm outperforms the informed trial-and-error strategy, finding a design

solution that is actually very similar to that of the globally optimal solution. A comparison be-

tween the time responses of these different design solutions is shown in Figure 4.7, and again the

performance of the trial-and-error solution is markedly worse than that of the GA and exhaustive

search approaches.

Table 4.2 – Comparison between best-peforming designs found using exaustive search, the genetic
algorithm, and trial-and-error tuning with f = −(Ts + βCe)

Method Config. # fmax Ts (s) Ce (Nms) k p1 p2 p3

Exhaustive 2 -3.3247 3.3 0.0247 10 1.1 0.3 0.7

GA 2 -3.325 3.3 0.025 14 1.5 0.4 1

Trial-and-Error 2 -9.3526 12 0.0526 12 0.3 0.3 0.3

4.5 Initial Assessment of the LSC Methodology

The results presented in the preceding section demonstrate that once again the genetic algorithm

outperforms an informed trial-and-error approach, and now the problem has been extended to the

broader challenge of location-scheduled control. Studying the time response and other characteris-
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Figure 4.7 – Comparison between performance results for all three design methods for f = −(Ts+βCe).

tics of the globally optimal solution found via exhaustive search is helpful for the purposes of this

first application of LSC, however it is important to remember that in very few situations will the

globally optimal result actually be known. Recall that in the last chapter a total of six gain terms

needed to be tuned, and if the same lower resolution (e.g. 15 candidate values) from this chapter

was applied to that problem it would still result in 22 million solutions that must be tested. Such a

large design space would essentially preclude design via exhaustive search. Thus, it is important to

assess the validity of LSC not against what a globally optimal solution might produce, but rather

what can be achieved by a control systems engineer tuning the system by hand. In that context,

the GA performed quite well. For both fitness function structures the GA was able to quickly and

efficiently find design solutions that outperformed trial-and-error. Similar to the results generated

in the last chapter, a general advantage of using the genetic algorithm is that the initial design

population is generated and then evolved randomly, allowing for a search of a broader swath of the

design space.

While the results presented in this chapter are concerned with the application of LSC to the

design of nanosatellites, it is important to remember that this concept can be extended to any

spacecraft whose major components can be reconfigured. The recent advances in creating modular

nanosatellites make them an appropriate candidate for this research, but the genetic algorithm

structure is entirely independent of the size or complexity of the spacecraft under study, and can be
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implemented with essentially any control law. These preliminary design results demonstrate that a

time savings can be achieved by applying a genetic algorithm to the dual optimization of controller

gains and hardware location while still delivering a solution that peforms at a level close to that

of the globally optimal solution. That is not to say that the GA will always yield results that are

comparable to the global optimum, but this optimum will often not be known. That is the case in

the problem presented in the next chapter, in which LSC will be applied to a hardware testbed for

reconfigurable spacecraft.

4.6 Sensitivity Analysis

An interesting characteristic observed in the simulation results was the sensitivity of the different

optimal solutions in terms of settling time. Small changes in control energy resulted in large changes

in the settling time of a given solution. This extreme sensitivity of settling time most likely derives

from the physics of the nanosatellite system itself, whereby very small changes in applied torque will

result in large changes in the angular acceleration of the system. Such sensitivity to a traditional

performance metric makes the creation of multiple fitness functions very appealing, as they could

allow the ADCS designer to try a number of different combinations of performance metrics to dial-in

the best performance for the system in question.

Once again, the preliminary GA results obtained using β = 1 in Equation (4.2) demonstrate

that for many applications it may be necessary to adjust this weight factor. The original intent of

including β was to allow the ADCS designer to tune the relative importance of the two performance

metrics when evaluating a candidate design. However, close inspection of Table 4.2 shows that

the values of settling time are approximately 100 times greater than the values of control energy,

which means the “unweighted” results actually are skewed in favor of settling time. Recall that

this is a similar result as was seen in Chapter 3. To understand how responsive the system was to

changes in β, additional exhaustive search trials were performed using the MATLAB simulation.

Surprisingly, the globally optimal solution for the detumble problem remained unchanged up until

the weight factor was β = 1670, and then a new controller design became the global optimum and

remained unchanged for still higher values of β. This blunt change from one design to another over

such a drastic span of weight factors corroborates the previously observed sensitivity to settling
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time for this system. The intended use of the weight factor was to allow the control designer to

make fine adjustments to the balance between settling time and control energy, but that was not

possible for this system. Looking at the results presented in the previous section, a better strategy

for nanosatellite control system design may be to use a fitness function in combination with a death

penalty, because the designer can choose a very specific numerical value of any performance metric

for use in the death penalty.
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Chapter 5

Extension to Reconfigurable

Spacecraft Including Hardware

Testbed Validation

As described in the Introduction, on-orbit spacecraft reconfiguration is increasingly considered an

effective means to meet the demand for inexpensive, versatile space platforms that can optimize

their configuration to carry out a variety of tasks. There are many approaches to this concept, in-

cluding mechanically connecting reconfigurable modular components [15], or repositioning members

of a constellation of satellites into different large-scale formations [26]. One relatively new concept

in spacecraft reconfiguration involves formations of close-proximity, non-contacting satellites which

can maneuver into different configurations with respect to one another. Such a system architecture

is applicable to fractionation concepts where different subsystems are carried in discrete spacecraft

that work together [4]. This architecture can also be applied to vibration-isolated non-contacting

platforms where the spacecraft bus and an instrument can be reconfigured to simultaneously opti-

mize, for example, both power generation and science throughput. When spacecraft are separated

by distances much less than their own length scale, control architectures must accommodate subtle

and changing system geometries on-orbit.

This chapter applies the basic LSC framework to simulation and experimental results for the

closed-loop control of a formation of nanosatellites operating together at separation distances on
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the order of centimeters or closer using a developing technology known as flux-pinned interfaces

(FPIs) for spacecraft. FPIs are an enabling technology for close-proximity non-contacting space-

craft reconfiguration. They influence the relative dynamics between the different modules in a

spacecraft formation using a phenomenon in superconducting physics known as magnetic flux pin-

ning. Although FPIs provide benefits in a variety of close-proximity spacecraft maneuvers, they

can be particularly useful in manipulating the kinematics of multi-module formations. Because

FPIs provide both stable spring-like behavior between modules and an alterable interface which

can be controlled to drive a reconfiguration maneuver, they serve as an enabling technology for

close-proximity reconfigurable formations.

In order to realize this architecture on space systems, however, the system must be controlled

at two levels: module-level interface maintenance/reconfiguration maneuvers and formation-level

collective maneuvers. The problem of controlling the relative reconfiguration of an FPI-linked for-

mation has been explored in previous work [48], but the challenge of controlling the formations col-

lective maneuvers has remained an open problem. The formation-level controller must be designed

to accommodate different system configurations and the associated change in system parameters,

such as the inertia properties of the formation or the actuators position within the formation. For

example, the formation may perform a series of check-out maneuvers in the configuration it had

when it was ejected from the launch vehicle, but may later undergo rotations in a configuration

optimized for data collection.

In this chapter LSC will be applied to a two-module formation of CubeSat scale nanosatellites

connected by an FPI which is commanded to perform a formation-level rest-to-rest slew. While both

flux-pinning and the LSC approach can be applied to complex systems involving multiple modules,

a two-module formation was selected for this initial work to simplify the hardware development

and to reduce the number of variables under investigation. In the maneuver under consideration,

the formation starts from rest, rotates a specified angle about a given axis, and then comes to rest

again. LSC is used to select both a system configuration and a set of controller gain values for

the maneuver offline using the GA. Note that for the purposes of this chapter the term “location”

refers to the physical placement of discrete system modules, whereas the preceeding chapter was

concerned with the placement of actuator elements.
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5.1 Flux-Pinned Interfaces for Reconfigurable Spacecraft

5.1.1 The Physics of Magnetic Flux Pinning

Magnetic flux pinning is a physical phenomenon found in type-II superconductors that are cooled

in the presence of magnetic fields of sufficient strength [7, 36]. Once the superconductor crosses

below its critical temperature, super-current vortices are created in the superconductor volume such

that the magnetic flux lines become pinned into the superconductors structure. For the Yttrium

Barium Copper Oxide (YBCO) used in this experiment, the critical temperature is 88 Kelvin. This

process, known as field cooling, produces a superconductor with an imprinted equilibrium magnetic

flux distribution; while the superconductor remains below its critical temperature it will seek to

maintain this distribution. As a result, a flux-pinned superconductor will provide the nonlinear

restoring forces and torques necessary to keep a magnet in an equilibrium, which can be set by

the magnets initial position and orientation when the superconductor crosses below its critical

temperature. In a 1-g environment, not only can the magnet be levitated above a superconductor

at separation distances up to centimeters, but it can also be held in that same equilibrium suspended

below or next to the superconductor, as shown in Figure 5.1.

Figure 5.1 – The flux-pinned interface effect demonstrated by a YBCO superconductor and a rare earth
permanent magnet.

The equilibrium created by flux pinning physics is passively stable and requires no power to

maintain beyond that which is required to keep the superconductor below its critical temperature.

Previous research has established that for a single-crystal YBCO disk 5.8 cm in diameter and 1.8

cm thick, flux pinning effects can be seen at separation distances up to 10 cm [37]. Changing the

magnetic field strength of the magnet can alter the equilibrium position and orientation as well as the
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stiffness of the connection, while warming the superconductor above its critical temperature erases

it. An axisymmetric magnetic field produces a non-stiff degree of freedom such that a cylindrical

magnet can spin freely about its longitudinal axis, whereas a completely asymmetric magnetic field

provides stiffness in all six degrees of freedom.

5.1.2 Applications of FPIs to Spacecraft

An FPI consists of a superconductor array and magnet array mounted to different spacecraft mod-

ules such that flux pinning influences the dynamics between them. The physics and the scale of flux

pinning make it particularly well-suited to close-proximity spacecraft applications. For example,

in a virtual space structure, spacecraft can be locked together with an FPI connection and later

released if the magnetic field is turned off or otherwise canceled, safely enabling applications such as

repairing or refueling modularized space systems. FPIs can also be uniquely applied to a reconfig-

urable spacecraft architecture in which they serve as both non-contacting structural members and

kinematic mechanisms [39]. When used at close relative distances in a spacecraft formation, the FPI-

connected modules in the formation operate as if they are connected by a damped, non-contacting,

nonlinear spring. This property enables FPI formations to maneuver as a single flexible body during

a formation-level reorientation or other collective maneuver. Past research [38] has demonstrated

that the configuration of a formation connected by an FPI can be changed by manipulating the

magnetic field in the interface. In this chapter it will be assumed that such a reconfiguration is

possible, and LSC will only focus on optimizing the motion of the overall formation during a slewing

maneuver.

5.1.3 Experiment Design with FPIs

The FPI design for this experiment is based on previous successful FPI reconfiguration experiments

[48]. As such, it uses a strong cylindrical permanent magnet with its axis of symmetry perpendicular

to the operating surface to provide the stiffness during the reconfiguration maneuver, with two other

locking magnets to keep the system in the desired configuration. For each experimental run, the

system is locked into one of the two possible configurations. Configuration #1 is a roughly linear

arrangement designed to simulate a launch configuration. Configuration #2 is an “L-like” shape

that a CubeSat formation may use for sensing or other operations. Both of these configurations are
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depicted in Figure 5.2.

Figure 5.2 – The two candidate configurations that the FluxCraft formation can take on, each of which
are tested in simulation and hardware.

For both configurations a spring-like stiffness is provided by the permanent hinge magnet and

by the locking magnet closest to the superconductor. The hinge magnet for this experiment is an

N52 Neodymium cylinder that is 2.54 cm high and 2.54 cm in diameter. Three 2.54 cm diameter

and 0.64 cm thick N52 Neodyminum permanent toroid magnets were stacked together to form the

locking magnets. These magnets interact with two YBCO disks 5.8 cm in diameter and 1.8 cm

thick that are cooled in a bath of liquid nitrogen (LN2). For each experimental run, the spacecraft

formation (consisting of the two CubeSat mockups connected by their FPI in a fixed configuration)

sets its initial orientation as a baseline, and then uses a PID controller to perform a 30◦ (0.524 rad)

slew, as seen in Figure 5.3. This figure shows a slew in Configuration #1, but the same maneuver

can be performed in Configuration #2. The formation retains its initial configuration because of

the stiffness in the FPI connecting the spacecraft, which serves as a passive non-contacting interface

between the modules. The slewing maneuvers are performed by reaction wheels governed by a PID

controller, which are discussed in detail in subsequent sections.

5.2 The Reconfigurable Spacecraft Testbed

5.2.1 Hardware Description

The experimental results for this chapter are obtained using Cornell University’s FloatCube testbed,

which was developed as a CubeSat-scale, multibody, reduced-friction environment for hardware val-

idation and laboratory experiments. This testbed consists of custom-made platforms equipped with
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Figure 5.3 – The rest-to-rest reorientation to be optimized using the LSC methodology.

pressurized CO2 cartridges supported by air bearing feet that can lift payloads up to approximately

6 kg. Each platform can provide approximately 10-12 minutes of reduced-friction floating. These

platforms are operated over a four-foot square piece of glass to provide a level and smooth surface

for experimental operations. The FloatCube testbed can accommodate up to four separate modules

at a time, as shown in Figure 5.4.

Figure 5.4 – Four examples of assembled FluxCraft/FloatCube Modules on the glass table

In order to collect information on the position and orientation of the modules on the table,

the FloatCube testbed has an overhead camera-based sensing system that records position and

orientation data at up to 30 frames per second by identifying targets affixed to the corners of the

modules. For the configuration used in this experiment, the static resolution of position accuracy

is 3.1 mm and angular accuracy is 1.2◦, although rapid motion of the testbed can cause reduced

accuracy or loss of data. The slewing maneuver in this experiment (shown in Figure 5.3) was

designed to avoid these limitations. The data from the camera system are not integrated into the

feedback control loop for the experiments described in this work; they are used only to assess the

performance of the system in post-processing data analysis.
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5.2.2 CubeSat Module Payloads

The FloatCube payloads used for the experiments in this work are small satellite mockups called

FluxCraft that were built to approximate the CubeSat standard. These satellite modules contain

laboratory equivalents of many of the same subsystems found on actual CubeSats. However, in-

stead of using flight-optimized hardware, the components in the module are standard off-the-shelf

equipment to enable low-cost laboratory experimentation. Thus, each FluxCraft is slightly larger

than a CubeSat, with a measurement of 12.5 cm on each side of the cube and a mass ranging from

1-4 kg depending on the module. They mount on top of the FloatCube platforms (as shown in

Figure 5.4). The full assembly of the active FluxCraft (the module with the on-board sensing and

actuation capability) and its FloatCube platform in this experiment has a mass of 4.856 kg.

Each standard FluxCraft is equipped with an on-board sensing and actuating package, a com-

munication system, and a microcontroller. In this work, the sensor system in the active FluxCraft

uses an ADIS16362 Inertial Measurement Unit (IMU) that can collect information in six degrees of

freedom, with a typical angular random walk of 2 ◦/
√
hr and 0.5◦/s of angular rate precision. Data

is collected at approximately 820 Hz, but this data is down-sampled to 6.4 Hz when transmitted

to the controller on the PC in order to minimize the time delays associated with packaging and

transmitting the data across the wireless connection. Nevertheless, the measured one-way time

delay in the system is 380 ms, almost all of which is attributable to BlueTooth protocols in han-

dling the incoming and outgoing data. Given the time scale of the experiment runs (30 seconds

total were allotted in simulation and the system tended to settle in approximately 10 seconds) this

is a significant time delay. The fact that the system is capable of reorienting itself in closed-loop

despite this delay reflects a certain measure of robustness in the system. Such a large delay has the

potential to cause marginally stable or even unstable behavior because of the discontinuity between

the commanded torques and the actual state of the system; however, as will be shown in the next

section, the formation is still capable of successfully performing the reorientation maneuver.

The actuators on board, shown in Figure 5.5, consist of two Maxon90 brushless motors acting as

reaction wheels, both of which are aligned so that they provide torque in the axis perpendicular to

the operating surface. Each motor has a maximum spin speed of 300 rad/s (2900 rpm) and a rotor

inertia of 3.06×10−4 kg m2. Torque or speed commands are sent from the main PC via Bluetooth
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Figure 5.5 – The active cube in the Flux-
Craft array which contains the reaction
wheels and IMU

Figure 5.6 – The passive cube which con-
tains the superconductors in the liquid nitro-
gen bath

to the Arduino BT microcontroller onboard the FluxCraft, with the aforementioned one-way time

delay of 380 ms. Torque commands to the actuators are parsed such that the total commanded

torque is shared equally between the motors on a given FluxCraft. The main PC connects to all

of the FluxCraft during a particular experiment and synchronizes the timestamps for the recorded

data. The controller is hosted on the main PC, where it can be easily altered for different experiment

types.

A second, simpler module is also used to cool the superconductor disks in a bath of liquid

nitrogen. Because the electronics and structural materials used in the standard FluxCraft have a

number of undesirable behaviors at cryogenic temperatures, this module was designed to be inert

and passive, carrying only the superconductor disks, a structure to hold them in place, and the

LN2. The structure of this module is constructed out of high density foam sealed to prevent leaks.

This passive FluxCraft mounts on top of the FloatCube platforms in the same manner as its active

counterpart, as seen in Figure 5.6, and the final assembly mass is 3.035 kg. Although this FluxCraft

is a lower-fidelity model of a CubeSat system containing a cryocooled superconductor, designing a

complete CubeSat-scale cryogenic thermal system is not in the scope of this experiment.
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5.2.3 Experiment Procedure

Each experiment typically lasts an hour and includes 15-20 different runs. It is preceded by a

standard setup procedure designed to ensure that experimental variations between runs are limited.

Before each run, the FloatCube platforms are fitted with full CO2 cartridges, and the air-bearing

feet and glass surface are cleaned to ensure a low-friction environment. The batteries in the active

FluxCraft are replaced with a freshly charged pack to ensure that the motors are provided a con-

sistent voltage. The FloatCubes are then positioned on the glass, the valves turned off to prevent

motion, and the FluxCraft payloads fitted to the platforms. The two modules are arranged in their

test configuration for field cooling. In order to field cool the modules, the LN2 is added to the

passive FluxCraft containing superconductors with the magnets from the active FluxCraft in place

(for consistency, the cylindrical magnet was touching the face of the passive cube at a tangent point,

near the center of the superconductor). This cooling procedure takes 5-7 minutes in order to ensure

the superconductors are below their critical temperature. Once the flux-pinning effect is verified

by inspection of the formation, the PC software connects to the active FluxCraft in order to begin

collecting IMU data. At the same time, the camera vision system is calibrated and set to track the

points on the top of the FluxCraft. Once both data sources are confirmed to be functional, the data

collection phase of the experiment begins.

Each experimental run consists of three phases. The first phase, described above, ends with

the flux-pinned interface established and the modules stationary, awaiting a command. Once the

modules are confirmed stationary, the second phase of the experiment involves the test operator

sending the desired PC command to the FluxCraft. Each experimental run is allowed to continue

until it achieves a performance to within a threshold of the desired value, or the test operator

determines that an off-nominal condition is causing errors in the run. Examples of experimental

variations include: a) batteries falling below their minimum allowable charge, b) pressure in the

CO2 system not providing sufficient lifting force to provide low-friction motion, c) LN2 levels in the

passive cube falling below the acceptable threshold, or d) glass surface conditions requiring alteration

(for example, small ice flakes from frozen condensation on the passive cube will occasionally fall onto

the glass and interfere with the floating of the modules, necessitating a re-cleaning of the operating

surface). When any of these situations are determined to be affecting the results, the experiment
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is stopped and the system reset accordingly. However, these conditions are consistently monitored

by test personnel and preventative measures taken to ensure any potential problems are addressed

before an experimental run is conducted. The final phase of an experiment involves commanding

the actuators to turn off and resetting the equipment for the next run. These phases are repeated

until the end of the experiment, when the data sets are collected and prepared for analysis.

5.3 Application of Location-Scheduled Control

The maneuvers commanded during each run of the experiment–and the optimal combinations of

system configuration and control law gains–are governed by the LSC methodology. Specifically,

LSC selects one of two system configurations and tunes the three gain terms of a PID controller in

parallel in order to optimize the response of the hardware testbed for the rest-to-rest slew maneuver.

For this example problem, the “location” is concerned with the physical arrangement of discrete

spacecraft modules. The need to reconfigure such discrete spacecraft within a formation (change

their location) will alter the inertia properties of the overall system, impacting the time response for

a specific maneuver. As in Chapter 4, LSC generates a schedule of gains that optimize controller gain

values based upon the unique system configurations available. The location of the reconfigurable

modules directly influences the gain values selected, giving rise to a location-based gain schedule.

In order to apply LSC to the hardware testbed the GA must once again be tailored to the needs

of the system under study. The first step in that process is to define the structure of the chromosome

representing each design. This string of digits must encompass both the configuration the formation

assumes and the gain values selected for the control algorithm. For simplicity, this research only

considers two distinct configurations for the collective, as shown in Figure 5.2. Since only two

configurations are to be tested, only one binary digit is required to capture this design element,

with a 0 indicating the system is in Configuration #1 and a 1 indicating it is in Configuration

#2. The remaining digits are allocated for the gains of the control law governing the slewing of

the formation. In this work a PID control law with three gain terms, kP , kI , and kD, is used to

implement the rest-to-rest 30◦ baseline slew maneuver. Early MATLAB simulations indicated that

for all three gain terms values falling between 0.001 and 5 tended to yield stable, desirable system

response. Eight binary digits were allocated for each gain term, providing a gain resolution of 0.0196

65



www.manaraa.com

and 256 different possible values that each gain can take on. This leads to more than 16 million

different design combinations. Once again it is not feasible to apply exhaustive search in order to

optimize the system configuration and controller gains, so informed trial-and-error tuning will again

be used as a point of comparison for the GA. A representation of the string of digits for a candidate

design is given in Figure 5.7.

Figure 5.7 – The chromosome structure used to tune formation configuration and PID controller gains.

The second major aspect of tailoring the GA for the reconfigurable testbed is to create an

appropriate fitness function. This chapter will make use of the same fitness function introduced in

Chapter 4, such that

f = −(Ts + βCe) (5.1)

however since this chapter is concerned with a testbed operating in discrete time a slightly different

definition for control effort expended is required, whereby

Ce =
1

N

∑
‖τi‖∆ti (5.2)

where the i subscript denotes the ith time step of either the simulation or the hardware implemen-

tation and N is the total number of time steps for a particular simulation or hardware run (not to be

mistaken with the inertial reference frame N). The Simulink model of the FluxCraft system makes

use of a variable time-step Runge-Kutta integration scheme, and a typical simulation run generates

approximately 120 data points. In contrast, a typical hardware run only generates between 15 and

30 torque commands, due to a combination of the system time delay and the hardware response

time. The format of Equation (5.2) is designed to accommodate for this difference in time vectors

by dividing by the length of that vector. Note that for this single-axis rotation maneuver it is

sufficient to use a traditional definiton of settling time, in which a system is deemed to have settled

when the spacecraft has reached 2% of the desired final value. However, as will be described in
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subsequent sections of this chapter, it is necessary to slightly modify this basic definition for the

results obtained from the hardware testbed.

Prior to applying the fitness function, each design must pass through a death penalty applied

to the angular velocity of the system control actuators. As described in the previous section, the

primary hardware actuators that control the formation’s slew is a set of brushless DC motors that

act as momentum exchange devices. The maximum angular velocity that each wheel can achieve

is 303 rad/s; therefore, the death penalty discards controller designs that result in the reaction

wheels exceeding this value. Since the death penalty has the effect of limiting the torque commands

coming from the controller it was decided that β should be tuned to provide an even balance between

settling time and control effort expended. Early testing revealed that the design metrics Ts and Ce

were approximately an order of magnitude different from one another, so the parameter β was set

equal to 10 to yield fitness scores with roughly even contributions from the two metrics.

The last step before implementing the GA is to tune the variables of the algorithm itself. As

in the preceeding chapters, the salient variables are the design population size (Pop), the number

of generations over which the GA is executed (Num), the crossover probability (Xover), and the

mutation probability (Mut). Using the results from the previous chapters as a guide, a number of

test runs of the GA were studied to determine what combination of variables resulted in the highest

average fitness value. Simulations revealed that the best combination of variables for this particular

application is Pop = 40, Num = 20, Xover = 70%, Mut = 0.001%.

For this hardware implementation a control systems engineer was given 2 hours to tune the PID

gain terms by hand in an effort to generate the best possible system response. The human engineer

used the same fitness function from Equation (5.1) to guide the gain tuning process, and was given

approximately twice the amount of time required for the GA to search the design space. This is

more time than has been previously allotted for trial-and-error tuning, but due to the complexity

of the hardware system it was felt that more time might be necessary. In addition to the trial-

and-error solution, a set of gains was deliberately selected to demonstrate a poor system response

as a counterpoint to the optimized system behavior. In particular, these non-optimal gains show

that the systems’ performance does improve with gains selected to optimize its behavior, and that

the system is not inherently so well-behaved that any combination of gains will produce reasonable

system performance. A summary of the best-performing PID gain values and system configurations
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selected for the reorientation maneuver using the three different methods is presented in Table 5.1.

Table 5.1 – Experimental PID gains and configurations.

Gain Sets kP kI kD Config. #

GA-Derived 0.0435 0.022 0.0265 2

Trial-and-Error 0.045 0.003 0.035 1

Non-Optimal 0.05 0.022 0.05 1

5.4 Model Development and Controller Implementation

5.4.1 System Model

The FluxCraft formation is capable of translating in two directions on the glass table as well as

rotating about an axis perpendicular to the table plane, but in this work only single-axis rotation

is considered. Four major system elements must be modeled in order to create a simulation of the

formation: the FluxCraft formation properties, the disturbances acting on the system, the system

actuators, and the ground computer to testbed communication. Ultimately the FPI formation

is a time-delayed, nonlinear system whose motion varies somewhat from run to run. Thus, it is

important to note that even with a highly accurate system model, the empirical results inevitably

differ from simulations due to experimental variations that cannot be accurately captured in the

simulated system model.

The GA requires a MATLAB/Simulink simulation of the testbed in order to select a system

configuration and tune controller gains. For this first experimental implementation of LSC the

system was modeled as two rigid cubes with non-homogenous mass distribution rigidly fixed to one

another in a given configuration. Neglecting the spring-like behavior of the FPI vastly simplifies

the equation of motion for the formation, and thus simplifies the evaluation of the fitness of the

candidate solutions in the genetic algorithm. Even with such a simplifying assumption, it will be

shown in the next section that the gains and system configuration selected still result in stable

closed-loop control of the hardware.

The most notable environmental disturbance torque acting on this system is Coulomb friction

between the air-feet and the glass surface. Although designed to be as low as possible, this constant
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torque significantly affects the system performance. To understand this disturbance, a series of

open-loop friction characterization tests were performed using the FluxCraft/FloatCube assembly

with the motors onboard. The variations in the magnitude of the observed friction torque as a

function of angular rate of the assembly were small enough to justify a constant-torque friction

model. The equation of motion for a planar rigid body with a control torque and a constant friction

disturbance is

θ̈ =
1

Jzz
(τc − τf ) (5.3)

where θ̈ is the angular acceleration of the FluxCraft formation about the body-fixed z-axis

(depicted in Figure 5.5), Jzz is the moment of inertia of the entire formation about the z-axis, τc

is the control torque applied by the reaction wheels, and τf is the Coulomb friction disturbance

torque. The value of Jzz differs for each of the two system configurations, which in turn changes

the time response of the system. This fact provides a central motivating factor for using LSC,

in that better performance can be achieved when system configuration and controller gains are

tuned in parallel. The numerical value of Jzz for each of the two system configurations is derived

from SolidWorks CAD models. While such models faithfully represent inertia properties when the

inputs are correct, uncertainties in the fabrication and alignment of components may contribute to

discrepancies between the performance of the simulation and that of the testbed.

The last step in modeling the system is developing an appropriate dynamics model for the two

Maxon90 brushless DC motors that serve as reaction wheels in the formation. These actuators

are aligned so that they provide torque in the axis perpendicular to the operating surface, and

are subject to limits in angular acceleration and angular rate, which are defined by manufacturer

specifications. The jerk limit was determined experimentally using open-loop tests. The Simulink

model for the reaction wheels accepts torque commands from the PID controller and applies a

saturation and rate-limited torque to the modeled FluxCraft array. The motors themselves are

rate-governed and cannot be controlled with a commanded torque directly. Thus, a number of

characterization tests were performed in order to estimate the mapping between a commanded

speed and the output torque, and the resulting transformation is applied to the torque command

prior to it being sent to the FluxCraft actuators.
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Table 5.2 provides a summary of the numerical values of the parameters used to model the

formation considered in this work. These values were incorporated into the final version of the

Simulink model, depicted in Figure 5.8. This system model was used by the GA to generate the

gain/configuration schedule for the rest-to-rest slew under study. Note that all simulation runs

were executed for 30 seconds of simulation time, regardless of the state of the simulated system at

the end of the run. In simulation the GA was able to select a combination of controller gains and

hardware configuration that settled to the desired state in less than 30 seconds, so this became the

baseline against which other candidate configurations were compared.

Figure 5.8 – The Simulink block diagram used for simulated control of the reconfiguragable testbed.

Table 5.2 – Reconfigurable testbed simulation parameters.

Parameter Value Units

θd 0.524 rad

θ̇d 0 rad

Jzz Config. #1 0.08 kg m2

Jzz Config. #2 0.0923 kg m2

Colulomb Friction Torque 0.0188 Nm

Reaction Wheel Velocity Sat-
uration Limit

303.7 rad/s

Reaction Wheel Acceleration
Saturation Limit

0.115 rad/s2
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5.4.2 Data Processing and Controller Implementation

Real-time closed-loop control consists of a PID controller operating on a desktop PC, with state data

and torque commands transmitted via BlueTooth. The controller relies on rate sensing data which,

in the hardware implementation, is collected by the IMU sensor on board the active FluxCraft. In

order to minimize the time delays in the system, the FluxCraft stores a set of five collected samples

before transmitting the data to the PC (where the controller is implemented). While the time delay

in the system is large by the standards of many digital controllers, it is small enough as compared

to the bandwidth of the system to not impact the feasibility of the experiment, which is the central

focus of this research. Upon receiving this packet from the FluxCraft, the PC then implements a

series of data processing techniques to obtain the error states necessary for the control law. The

resulting commanded torque is then translated into the motor rate commands and transmitted back

to the FluxCraft. An overview of this procedure is shown in Figure 5.9, and is replicated for the

simulated system (including inbound and outbound time delays of 380 ms) in Figure 5.8.

Figure 5.9 – Flow of data from the IMU data collection to the command of the motor’s angular rate.

When the packet of data arrives at the PC, the first processing step is to subtract out the IMU

bias values, which are found in a calibration step completed prior to each experiment. The unbiased

data is then processed to determine the proportional, integral, and derivative error signals. In this

set of experiments, the desired formation angle (as depicted in Figure 5.3) is 30◦, and the desired

derivative and integral of the angular error is zero.

The derivative of the angular error is the most straightforward to find, since the derivative of

the angular error is the error in angular rate. The IMU directly reads angular rate, and so the
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weighted average of the five values in the packet is taken as the current value (where the weights

from Booles Rule with step size of 0.25 are used). It is worth noting that this approach effectively

applies a low-pass filter on the incoming IMU data. The PC software then calculates the estimated

change in the angle corresponding to the angular rates recorded in the packet. At each of the five

sample time steps, Boole’s rule is used to integrate the five previous angular rate values (using

values from previous packets as necessary or zeros if it is the first packet). The output of this

process is a set of values representing the change in the angle that occurred between each data

sample. The summation of these values over time produces an angle estimate for the module. This

angle can be directly compared to the desired angle (30◦) to produce the proportional error term.

The integral error term is found in much the same way–however, in this case Booles rule is applied

to the previous angular positions (as opposed to rates) and summed. These processing steps are

depicted in Figure 5.10.

Figure 5.10 – Process for determining current angular position, rate, and integral from a data packet
of five samples.

Once the angular position, rate, and integral and the appropriate errors are found, the PID controller

can be implemented with the following expression for control torque:

τc = kP θe + kI

∫
θe + kDθ̇e (5.4)

where θe is the error in the angular position of the array,
∫
θe is the integral of that error, and θ̇e is
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the derivative of the error. One advantage to the control law structure of Equation (5.4) is that it

does not require differentiating measured values from the IMU, which would amplify noise. Given

the processed data and the system gains, the control law then calculates the commanded torque.

5.5 Reorientation Maneuver Optimization Results

The simulated and empirical data both offer insight into LSC and FPI performance, but the amount

of data gathered during the experiments can be difficult to parse when seen in raw form. Thus, the

results and discussion are presented together in two main focus areas emphasizing the objectives

of the research. This first section will compare the simulated and experimental performance of the

system using the LSC methodology, and the second section will compare the systems performance

using gains obtained from different selection techniques.

5.5.1 Collected Data Overview

The testbed collected two sets of position and rate data: one from the on-board IMU and the other

from the overhead camera-based vision system. The IMU provides angular velocity information

about three axes from the active FluxCraft, and the camera system measures the absolute transla-

tional and rotational position of each module in the FluxCraft formation. Each data source is used

to determine the states of the formation in post-processing, although the IMU data alone is used

in the control law. Figure 5.11 shows an example of the time history of the angular position and

angular velocity of the testbed using both data sources. Note that both the IMU and camera system

data presented in this figure (and in subsequent figures) plot the motion of the active FluxCraft.

The differentiated camera measurements provide noisy angular velocity results, but the integrated

IMU data tracks the camera orientation data closely. The performance of the formation–in partic-

ular its final orientation angle relative to the testbed and the time it took to settle to within 2% of

that final value–was calculated using data such as that presented in Figure 5.11

The torque commands sent from the PC to the FluxCraft were also recorded. This data set

provided the basis for determining the control effort expended by the testbed for each maneuver.

As described in Section 5.4, the control effort metric is calculated as the discrete integral of the

commanded control torques sent from the desktop PC to the testbed, where the time step for this
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Figure 5.11 – Example time response obtained form the hardware testbed.

integral is driven by the communication delay rate between the PC and the FluxCraft. Using the

control effort and the information from the position and rates of the system for a given test run it

is possible to calculate a total fitness score (defined in Equation (5.1)) for the testbed.

5.5.2 Comparison Between Simulated and Hardware Results

A comparison between simulated and hardware performance metrics for the design solution obtained

using LSC is presented in Tables 5.3 and 5.4. Recall from Table 5.1 that the GA selected a set

of gains and chose to operate the testbed in Configuration #2; to understand the utility of this

choice the same set of performance results are also presented for Configuration #1 (with the same

controller gains as in Configuration #2). The number of individual test runs completed for each

hardware test is included to provide a context for the performance information found in the tables.

The minimum and maximum values of settling time and the final settling angle (θf ), as well as the

data measurement source for these minima/maxima is presented along with the mean value over all

test runs. A data value is marked with an asterisk if the hardware data is derived from the IMU;

otherwise, hardware data can be assumed to come from the camera system. While the sample sizes

(11 and 7 runs, respectively) are too small to derive any meaningful statistical analysis, presenting

minimum, maximum, and mean values does provide a sense of the nature of the testing data.

The control effort and fitness scores are both calculated from the corresponding experimental or
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simulation data. As seen in Tables 5.3 and 5.4, both the simulated and hardware systems perform

better (e.g. have a larger fitness score) when using the GA-derived gains in Configuration #2

than in Configuration #1. In simulation the system only has a slightly higher fitness score when in

Configuration #2 as compared to Configuration #1, but in the hardware experiments this difference

was more pronounced. The mean settling times and the final settling angles of Configuration #2

are also better than Configuration #1, and the minimum and maximum angle values are closer to

the desired final value of 30◦.

Table 5.3 – System performance for GA-derived gains in simulation and experiment (where * denotes
IMU data; otherwise data is derived from the camera system).

Tests Settling Time (s) Settling Angle θf (◦)

Test Type Data Source # Runs
Range

(min/max)
Mean

Range
(min/max)

Mean

GA Config. #2 Hardware 11 4.1*/12.9 7.7 27.2/33.9 30.2

GA Config. #2 Sim 1 6.1/6.1 6.1 30/30 30

GA Config. #1 Hardware 7 5.7/11.9 9.3 25.6*/36.8* 30.4

GA Config. #1 Sim 1 6.6/6.6 6.6 30/30 30

Table 5.4 – System performance for GA-derived gains in simulation and experiment (where * denotes
IMU data; otherwise data is derived from the camera system).

Tests Control Effort (Nms) Fitness Score

Test Type Data Source # Runs
Range

(min/max)
Mean

Range
(min/max)

Mean

GA Config. #2 Hardware 11 0.01/0.05 0.04 -5.1/-12.9 -7.7

GA Config. #2 Sim 1 0.01/0.01 0.01 -6.1/-6.1 -6.1

GA Config. #1 Hardware 7 0.01/0.066 0.04 -5.7/-11.9 -9.4

GA Config. #1 Sim 1 0.02/0.02 0.02 -6.6/-6.6 -6.6

In order to make a one-to-one comparison between the different testing conditions, the metric

used for settling time was modified slighly to consider the amount of time required for the testbed

to settle to within 2% of the final measured angular position, denoted θf . As can be seen in

Tables 5.3 and 5.4, all of the hardware tests did settle to some final angle, but oftentimes that final

angle was not the 30◦ specified by the closed-loop controller. This steady-state error was likely

induced by the static friction between the table and the testbed, a disturbance which is hard to

directly eliminate when the sensor data is being packetized. Furthermore, there is a fundamental
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coarseness with which torque commands can be applied to the testbed, which when coupled with

the aforementioned time delays can result in the formation simply settling at a value other than

30◦ because by the time the final torque command is applied the system has already achieved the

desired final orientation.

While one might expect the testbed system to not have any steady-state error, the motor

saturation effects, the system time delay, and the presence of a persistent and roughly-modeled

disturbance torque all impact the behavior of the hardware testbed. One positive effect of the

discrepancy between the steady-state error of the testbed and that of the simulated system is that

it demonstrates a certain measure of robustness. In spite of the unmodeled system elements which

result in steady-state error (including the flexible dynamics of the FPI), the hardware system is able

to complete the reorientation maneuver using gain values derived from simulation test runs. If the

controller design strategy was not robust to such discrepancies in system parameters it is possible

that very poor or even unstable behavior would have resulted from the simulation-derived gains.

While a formal robustness analysis was not performed, the experiment results demonstrate that

acceptable system performance can still be accomplished despite differences between the simulated

and hardware testbeds.

The performance data for both system configurations are relatively close, but the aggregate data

shows that differences do exist. As seen in Table 5.2, the rotational inertia Jzz of Configuration #1

is similar to that of Configuration #2; so the system response between the two configurations should

not show drastic differences. However, looking at the data for all hardware runs, the testbed takes

on average about two seconds longer to reorient 30◦ when it is in Configuration #1 as opposed to

Configuration #2. This is a difference that could drastically impact spacecraft proximity operations

or collaborative architectures such as sparse-aperture optical spacecraft. A strength of the LSC

approach is that the system configuration is optimized in parallel with the controller gain values.

So, regardless of how large or small a spacecraft may be, the system dynamics are necessarily

incorporated into the optimization process. For small spacecraft, system inertias can differ by 0.01

kg m2, and, as seen in this work, such a small difference will in fact change the time response of

the system.

Another discrepancy between the hardware data and the simulation data is that the hardware

system appears to require approximately twice as much control effort to perform the reorientation
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maneuver. Again, the overall trend is still valid in that the system performs better (i.e., uses less

control effort) in Configuration #2. This difference is likely due to inaccuracies in predicting the

overall inertia of each spacecraft in the formation as well as unmodeled friction within the reaction

wheels or static friction effects of the glass table.

5.5.3 Comparison of Gain Tuning Methods

This section compares the performance of the best design solutions obtained using each of the three

previously-described gain tuning methods. The simulated time responses of the best-performing

solutions for each method (listed in Table 5.1) are plotted in Figure 5.12, and Figure 5.13 shows

the hardware response using those same gains. Note that in these figures ‘GA’ denotes the genetic

algorithm solution, ‘TE’ the informed trial-and-error solution, and ‘NO’ the poor-performing (non-

optimal) solution.

Figure 5.12 – Simulated time response of the best-performing solution found using each of the three
design methods.

Numerical data associated with the different gain-tuning methods are presented in Tables 5.5

- 5.8. Tables 5.5 and 5.6 detail the settling information for the different systems and Tables 5.7

and 5.8 give the control effort expended and the final fitness scores for the systems. Once again,

minimum, maximum, and mean values are presented to help provide a sense for the behavior of

the given experimental set-up. Again, unmodeled system dynamics introduce a certain amount of
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Figure 5.13 – Hardware time response of the best-performing solution found using each of the three
design methods.

steady-state error into the hardware runs, so these trials were evaluated by measuring how quickly

the system nears its final angular position (θf ) while tracking the magnitude of this error.

Table 5.5 – Comparison of aggregate gain source settling time data (where * denotes IMU data; oth-
erwise data is derived from the camera system).

Tests Settling Time (s)

Test Type Gain Source # Runs
Hardware

Range
(min/max)

Hardware
Mean

Sim.

GA Config. #2 GA 11 4.1*/12.9 7.7 6.1

GA Config. #2 TE 5 6.1*/21.8 12.0 8.6

GA Config. #1 GA 7 5.7/11.9 9.3 6.6

GA Config. #1 TE 2 4.2*/9.9 7.5 7.2

GA Config. #1 NO 5 10.3*/26.4* 15.1 n/a

These data reveal that–as expected from simulation–the GA-derived combination of configura-

tion and gains is the best overall performer in hardware, as determined by the hardware’s average

fitness score. In particular, the data (on average) show that this configuration and gain combination

had the best fitness score (the lowest absolute value), the least error in the final settling angle, and

overall low mean settling times and control effort. The second best performance was found with the

trial-and-error gains applied to Configuration #1, followed by the GA gains applied to Configuration
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Table 5.6 – Comparison of aggregate gain source final settling angle data (where * denotes IMU data;
otherwise data is derived from the camera system).

Tests Settling Angle θf (◦)

Test Type Gain Source # Runs
Hardware

Range
(min/max)

Hardware
Mean

Sim.

GA Config. #2 GA 11 27.2/33.9 30.2 30

GA Config. #2 TE 5 25.8/29.5 27.5 30

GA Config. #1 GA 7 25.6*/36.8* 30.4 30

GA Config. #1 TE 2 29.6/31.9* 30.5 30

GA Config. #1 NO 5 28.1*/35.4* 32.3 n/a

Table 5.7 – Comparison of aggregate gain source control effort data.

Tests Control Effort (Nms)

Test Type Gain Source # Runs
Hardware

Range
(min/max)

Hardware
Mean

Sim.

GA Config. #2 GA 11 0.01/0.05 0.04 0.01

GA Config. #2 TE 5 0.02/0.15 0.05 0.02

GA Config. #1 GA 7 0.01/0.07 0.04 0.02

GA Config. #1 TE 2 0.03/0.03 0.03 0.01

GA Config. #1 NO 5 0.04/0.06 0.05 0.03

Table 5.8 – Comparison of aggregate gain source fitness function data.

Tests Fitness Score

Test Type Gain Source # Runs
Hardware

Range
(min/max)

Hardware
Mean

Sim.

GA Config. #2 GA 11 -5.1/-12.9 -7.7 -6.1

GA Config. #2 TE 5 -6.8/-21.8 -13.1 -8.6

GA Config. #1 GA 7 -5.7/-11.9 -9.4 -6.6

GA Config. #1 TE 2 -7.6/-9.9 -8.8 -7.2

GA Config. #1 NO 5 -10.4/-16.4 -13.4 n/a

#1. The trial-and-error gains in Configuration #1 have the lowest mean settling time and control

effort expended for the hardware runs, but not the lowest overall fitness score. This is due to the

wide difference in the number of experiment runs between Configuration #1 and Configuration #2,

which impacts the calculated mean value of the performance metrics. It is worth noting that the
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second-best performer (TE in Configuration #1) only had two successful experiments, suggesting

that the data may not be as reliable as for other test types. More experiments would need to be

conducted to draw further conclusions about this data.

It is interesting to observe that the performance of the non-optimal gains was much better on

the hardware testbed than in simulation. In simulation the non-optimal gains result in marginal

stability of the testbed, while in hardware these same gains only result in poorer, albeit stable,

performance. This discrepancy must be attributed to unmodeled aspects of the hardware testbed,

such as increased friction, different dynamics within the reaction wheels, or effects from the system

time delay being different from the single, constant value used in simulation. The effect of these

unmodeled system elements is that they actually result in a certain amount of robustness, in that

the simulated system was only marginally stable. Neither the time delay nor the friction components

were modeled in an exactly perfect manner, and the true hardware system responded better to the

application of the control law with non-optimal gains.

5.6 Assessment

The results presented in this chapter show that the performance trends anticipated by simulation

of the LSC-generated solutions were verified on the testbed, despite the presence of unmodeled

dynamics, such as the flexible motion of the FPIs. Hardware results also show that the gains

and configuration selected by the LSC methodology produced the best fitness score, although the

small number of experiments made it difficult to draw conclusions about the other high-performing

configuration (such as the trial-and-error gains in Configuration #1). The current limitations of the

work presented here include unmodeled flexible motion in the simulations, a lack of sensor noise in

the system model (or any filtering scheme to accommodate such noise), and the large time delay

present in the system. This time delay was the result of multiple sensing systems and off-board

control algorithm execution, and the time delay included in the Simulink model was the best possible

approximation of those delay sources. The relatively few experiments made a comprehensive error

or statistical analysis difficult, and the relatively simple two-spacecraft formation does not fully

leverage the utility of the LSC methodology. However, even given these limitations, this work

represents an important testbed-based assessment of location-scheduled control feasibility, the first
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hardware-based evaluation of FPI behavior during a formation-level maneuver, and an experimental

demonstration highlighting the utility of a CubeSat-scale reconfigurable formation testbed.
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Chapter 6

Conclusion

6.1 The LSC Approach

This dissertation introduced a new approach to the design of the ADCS of nanosatellites known as

location-scheduled control. LSC hopes to anticipate the needs of the science payload of a wide array

of missions by creating a schedule of design solutions a priori. This schedule of designs is valid for

both of the reconfiguration approaches presented in this work, rearrangement of modules between

missions or reconfiguration of discrete components on-orbit. It is understood that no real-world

system will function in the exact manner predicted by simulation, but that limitation is a truth

for all controller design methods, not just location-based design. Accepting that a small amount of

fine-tuning will be necesssary as the final hardware components come together, there is still a valid

contribution to be made by anticipating (as best as possible) the optimal way in which a spacecraft

could perform for a given science payload undertaking a specific rotational maneuver.

In its broadest instantiation, the LSC approach could be undertaken for multiple spacecraft

layouts (e.g. 6U and 12U), using multiple ADCS cubes (a “low-performance” model and a “high-

performance” model), tuned for multiple rotational maneuvers (e.g., detumble and tracking). If all

of this work is performed prior to any missions being initiated, then the spacecraft design team

has a powerful “toolbox” of solutions that can be drawn upon during the early phases of future

missions. Other subsystems, such as the telecommunications system or the command and data

hanlding system, already have this broad-base set of tools available to them, in that a specific radio

receiver or microprocessor can be selected based on the needs of the mission. However, unlike these
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other systems, the nature of ADCS hardware largely lends itself to being packaged as a stand-alone

module, enabling it to be relocated based on the needs of a particular mission. That potential

has existed for a number of years now thanks to companies like Sinclair Interplanetary, Maryland

Aerospace, and Isis, and LSC simply aims to harness that potential.

Application of LSC to spacecraft that reconfigure on-orbit is different in that we now define

a “location” as a particular configuration of discrete modules, but the same broad potential still

exists. As reconfigurable spacecraft technologies become more commonplace it is likely that a

collection of standardized modules will arise, and the LSC design strategy can be applied to this

collection of modules. For example, a known science payload may be packaged into one module

with a known collection of support modules around it, and LSC can be tasked to select the optimal

configuration of those modules for any number of rotational maneuvers. It is likely that the main

ADCS components will all live in the same unique module, so in many ways the overall design

approach really is no different from the basic ADCS design problem presented in Chapter 4. The

simulation and hardware results presented in this dissertation demonstrate that the LSC approach

shows promise, and it would be helpful to develop more example problems to reinforce the existing

results.

6.2 GAs for Design Optimization

The nature of genetic algorithms make them a perfect tool for LSC. The fact that one can combine

multiple disparate design features into a single string of binary digits for the purposes of optimization

makes tuning gains and physical parameters essentially seamless. The stochastic search of the

design space as driven by crossover and mutation can be helpful for complex problems, and the

user-defined fitness functions allow for relatively precise control of the parameters that are to be

optimized. That being said, a genetic algorithm must be tuned for each new application to which

it is applied, and due to the heuristic nature of the algorithm there is no set approach to the tuning

process. Throughout this dissertation a number of different combinations of design variables (Pop,

Num, Mut, and Xover) were tested, but there is no hard proof that these were the best possible

combinations. The performance results presented in Chapters 3-5 indicate that the GA tended to

outperform both trial-and-error search and exhaustive search, but more work could certainly be
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done to better confirm this hypothesis. Past research [9] has actually applied a “meta-GA” to the

problem of tuning the GA used for parameter optimization, and it would be interesting to apply

that same approach to the system presented here.

Traditional optimization strategies often seek a global miminum to a known cost function. One

common tool for such optimization problems is the MATLAB ‘fmincon’ function, which applies a

gradient search technique to the problem under study [29]. The complex design space demonstrated

in Chapters 3 and 5 indicate that gradient search could become stuck on local maxima/minima,

and due to the mathematical rigors of miminizing a complex cost function it is also likely that

such an optimization approach would simply take a very long time. When assessing the efficacy

of the genetic algorithm for LSC it is critical to remember that one cannot apply the intuition

of optimization methods for gain tuning only. If one seeks to optimize both gain values and the

physical location of control actuators it is not as simple as just placing poles on a root locus diagram

or solving an LQR equation. Despite the drawbacks of lacking a rigorous proof of optimality, the

ease with which one can obtain well-performing design solutions for complex problems make genetic

algorithms an ideal tool for LSC.

6.3 Future Work

Every example presented in this research has neglected the attitude determination part of the overall

ADCS design problem. In each case it was assumed that the spacecraft had perfect knowledge of its

state, a condition which never exists in real-world systems. This omission was made intentionally

in order to better assess the performance of the different design methods under study, because the

stochastic nature of “real” systems can make it hard to quantify the behavior of a particular design

approach. If, for example, an engineer was trying to optimize a fitness function that included Ce but

the actuator itself was producing a noisy output torque signal, the calculated fitness value would

vary widely in between trial runs. In order to force a one-to-one comparison between the GA or

the other methods all sensor/actuator noise was omitted from the trials.

Given that there now exists a set of baseline results which demonstrate that LSC by means

of a GA has a tenedency to outperform exhaustive search or trial-and-error search it would be

worthwhile to expand the tests to noisy systems. The FluxCraft testbed described in Chapter 5 is

84



www.manaraa.com

a ready example of this, given that the IMU used to collect state information (seen in Figure 6.1)

produces noisy measurements and that noise was more-or-less ignored in the data collection process

of Chapter 5. One possible strategy would be to inject noise in simulation into a system that was

optimized under a no-noise assumption, which is similar to the sensitivity tests that were performed

in some of the chapters of this dissertation. Another possible approach is to run the GA or trial-

and-error optimization with a simulation that has system noise. The challenge here would be that

the noise properties–and hence the performance that is being optimized–varies from run-to-run,

and it is hard to say how well the GA (or a human engineer) could find an optimal solution. Both

approaches merit further testing to better understand the efficacy of LSC in the presence of system

noise.

Figure 6.1 – The inside of the active FluxCraft used in Chapter 5, with the Analog Devices IMU visible.

While there is a somewhat limited set of metrics that are used to assess the performance of a

control system, in future applications of LSC it could be intstructive to test different performance

metrics within the fitness function. Each of the application examples utilized some combination

of settling time and the amount of control effort expended; although these are benchmark criteria

for controller design the performance of the LSC methodology may well be better understood if

a more diverse group of metrics are implemented. Possible candidates include percent overshoot,

some description of tracking error, or additional measures for the amount of energy being consumed

by the system. The evolution of the design population in the GA is intimately linked to the nature

of the fitness function being used, and LSC would benefit from additional application examples that
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used a wider range of fitness functions.

A clear obstacle impeding the widespread use of nanosatellites for scientific exploration is the

limited number of control algorithms and control actuators which have actually been implemented

in this form factor. The controller presented in Chapter 4 directly accommodated for actuator

saturation limits, however due its use of Modified Rodrigues Parameters it cannot be said to be

Lyapunov stable in the state space of rigid body rotations. A valuable area of future research would

be to extend controllers which operate on the full state space of SO(3)×R3 to accomodate actuator

saturation limits, and to expand the range of candidate actuator systems. A number of reaction

wheels are available for use in CubeSats, and a few companies are now offering made-to-order

magnetic torque coils. However, thruster systems remain too large to be easily incorporated into

even a 6U spacecraft. Some promising work is being done at MIT and JPL regarding electrospray

propulsion systems, but these remain at a relatively low level of technology readiness. Expanding

the range of actuators that can be quickly plugged into CubeSats, along with controllers that can

elegantly control them, would be a valuable contribution to the field.

The research presented in this dissertation focused on nanosatellites because they are a timely

example of spacecraft that can be readily reconfigured. As described earlier the LSC approach

is indifferent to the size of the spacecraft or the nature of the control law being utilized, and it

would be interesting to study how the GA (or the other design methods) behaved when the same

basic concepts are applied to a different spacecraft model. One nicety of nanosatellites is that they

allow the user to assume a perfectly rigid body, an assumption that is not valid on spacecraft with

deployable solar panels or other external structures. Flexible body motion greatly changes the

dynamic response of the spacecraft, and it would be valuable to determine what impact, if any, this

has on the ability of the GA to efficently find LSC design solutions. Similar search strategies as

those described for sensor/actuator noise could be employed, in that the averages of multiple trial

runs may prove to be the most instructive.

6.4 Concluding Remarks

The original motivation for this research was to help faciliitate a new class of scientific nanosatellites

by changing the underlying approach to ADCS design. The unfortunate truth of the aerospace
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industry is that there are often forces acting on missions which cannot be modeled by an engineer,

such as the consistency of funding sources or the whims of politicians. However, if one can build

a spacecraft in a short period of time while maximizing the science return of that mission it may,

over time, become possible to navigate around such exogenous inputs. This dissertation does not

offer a concise proof of stability or optimality, but hopefully it has introduced a new concept which

complements the emerging era of small, inexpensive access to space that is upon us.
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